Документ подписан простой электронной подписью Информация о владельце:

ФИО: Наумова Наталия Алектирни СТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность Ректор дата подписания: 04.07.2025 03.1377 ОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ» Уникальный программный ключ. ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ» 6b5279da4e034bff679172803da5 (4) 02.574 ДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

<u>Кафедра фундаментальной физики и нанотехнологии</u> (наименование кафедры)

УТВЕРЖДЕН на заседании кафедры Протокол от «11» марта 2025 г., №11

Зав. кафедрой ______ [Холина С.А.]

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине (модулю) Физика конденсированного состояния

Направление подготовки: 03.03.02 Физика

Содержание

1. Перечень компетенций с указанием этапов их формирования в процессе освоен	ния
образовательной программы	3
2. Описание показателей и критериев оценивания компетенций на различных эта:	пах
их формирования, описание шкал оценивания	3
3. Контрольные задания или иные материалы, необходимые для оценки знан	ий,
умений, навыков и (или) опыта деятельности, характеризующих эта	λПЫ
формирования компетенций в процессе освоения образовательной программы	4
4. Методические материалы, определяющие процедуры оценивания знаний, умен	ий,
навыков и (или) опыта деятельности, характеризующих этапы формирова	ния
компетенций	9

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы 1

Код и наименование компетенции	Этапы формирования
ОПК-1. Способен применять базовые знания в области	1.Работа на учебных занятиях
физико-математических и (или) естественных наук в сфере	2.Самостоятельная работа
своей профессиональной деятельности.	

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания 2

Оценива	Уровень	Этапы	Описание показателей	Критерии	Шкала
емые	сформир	формирова		оцениван	оцениван
компете	ованнос	ния		ия	ия
нции	ТИ				
ОПК-1	Порогов	1.Работа на	Знать: основные модели задач в	доклад,	Шкала
	ый	учебных	рамках дисциплины с учетом их	домашнее	оцениван
		занятиях	границ применимости.	задание	ия
		2.Самостоя	Уметь: грамотно использовать в		доклада
		тельная	профессиональной деятельности		Шкала
		работа	базовые знания физики		оцениван
			конденсированного состояния,		ия
			создавать модели типовых		домашнег
			профессиональных задач и		о задания
			интерпретировать полученные		
			результаты с учетом границ		
			применимости моделей.		
	Продвин	1.Работа на	Знать: основные модели задач в	доклад,	Шкала
	утый	учебных	рамках дисциплины с учетом их	домашнее	оцениван
		занятиях	границ применимости.	задание,	ия
		2.Самостоя	Уметь: грамотно использовать в	практичес	доклада
		тельная	профессиональной деятельности	кая	Шкала
		работа	базовые знания физики	подготовк	оцениван
			конденсированного состояния,	a	ИЯ
			создавать модели типовых		домашнег
			профессиональных задач и		о задания
			интерпретировать полученные		Шкала
			результаты с учетом границ		оцениван
			применимости моделей.		ия
			Владеть: методами использования в		практиче
			профессиональной деятельности		ской
			базовых знаний физики		подготов
			конденсированного состояния для		ки
			создания моделей типовых		

¹ Указывается информация в соответствии с утвержденной РПД

 $^{^{2}}$ Указывается информация в соответствии с утвержденной РПД

	профессиональных	задач	н и
	интерпретации	полу	ченных
	результатов с	учетом	границ
	применимости мод	целей.	

Описание шкал оценивания

Шкала оценивания написания доклада.

Критерии оценивания	Баллы
Если студент отобразил в докладе 71-90% выбранной темы.	8-10
Если студент отобразил в докладе 51-70% выбранной темы	5-7
Если студент отобразил в докладе 31-50% выбранной темы	2-4
Если студент отобразил в докладе 0-30% выбранной темы	0-1

Шкала оценивания практической подготовки.

Критерии оценивания	Баллы
Если студент решил 71-90% от всех задач	16-20
Если студент решил 51-70% от всех задач	11-15
Если студент решил 31-50% от всех задач	6-10
Если студент решил 0-30% от всех задач	0-5

Шкала оценивания домашних работ.

Критерии оценивания	Баллы
Если студент решил 71-90% от всех домашних работ	8-10
Если студент решил 51-70% от всех домашних работ	5-7
Если студент решил 31-50% от всех домашних работ	2-4
Если студент решил 0-30% от всех домашних работ	0-1

3. Контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Текущий контроль

ОПК-1. Способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности.

Знать: основные модели задач в рамках дисциплины с учетом их границ применимости.

Задания, необходимые для оценивания сформированности ОПК-1 на пороговом уровне

Перечень тем докладов по дисциплине

- 1. Механика сплошных сред.
- 2. Электродинамика сплошных сред.
- 3. Физика твёрдого тела.
- 4. Физика жидкостей.
- 5. Мезоскопическая физика.
- 6. Мягкое конденсированное вещество.
- 7. Квантовый эффект Холла.
- 8. Сверхпроводимость.
- 9. Сильно коррелированные системы.
- 10. Спиновые цепочки.
- 11. Высокотемпературная сверхпроводимость.
- 12. Физика неупорядоченных систем.
- 13. Симметрия и законы сохранения в физике конденсированного состояния.
- 14. Теоремы Кюри.
- 15. Сегнетоэлектрические жидкие кристаллы.

Задания, необходимые для оценивания сформированности ОПК-1 на продвинутом уровне

Перечень тем докладов по дисциплине

- 1. Электреты.
- 2. Пьезоэлектрики.
- 3. Высокотемпературная сверхпроводимость.
- 4. Многочастичные взаимодействия.
- 5. Аморфное состояние вещества.
- 6. Классификация жидких кристаллов.
- 7. Ближний и дальний порядок в жидких кристаллах.
- 8. Дефекты в жидких кристаллах.
- 9. Жидкие кристаллы в электрических и магнитных полях.
- 10. Лиотропные жидкие кристаллы.
- 11. Динамика жидких кристаллов.
- 12. Ультразвуковые методы исследования конденсированных сред.
- 13. Математическое моделирование мезофаз.

Уметь: грамотно использовать в профессиональной деятельности базовые знания физики конденсированного состояния, создавать модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей.

Задания, необходимые для оценивания сформированности ОПК-1 на пороговом уровне

Перечень примерных домашних заданий по дисциплине

- 1. Найти элементы точечной симметрии нематического жидкого кристалла и кристалла поваренной соли.
 - 2. Найти элементы пространственной симметрии простой кубической решетки.
 - 3. Найти предельную группу Кюри для однородного электрического поля.

Задания, необходимые для оценивания сформированности ОПК-1 на продвинутом уровне

Перечень примерных домашних заданий по дисциплине

- 1. Какие элементы симметрии простой кубической решетки сохраняются при ее сжатии вдоль оси (1. 1. 1)?
 - 2. Какие оси симметрии совместимы с кристаллической решеткой?

Владеть: методами использования в профессиональной деятельности базовых знаний физики конденсированного состояния для создания моделей типовых профессиональных задач и интерпретации полученных результатов с учетом границ применимости моделей.

Задания, необходимые для оценивания сформированности ОПК-1 на продвинутом уровне

Перечень заданий для практической подготовки

1. Энергия взаимодействия между двумя атомами в молекуле зависит от расстояния следующим образом:

$$U(r) = -\frac{\alpha}{r^n} + \frac{\beta}{r^m}.$$

Межатомное расстояние в положении равновесия r0=3Å, энергия диссоциации (расщепления нейтральной молекулы на противоположно заряженные ионы) молекулы Uд=-4 эВ. Вычислить значения коэффициентов α и β , если n=2, m=10. Найти силы, стремящиеся вернуть атомы в положение равновесия при изменении межатомного расстояния r0 на 10 %.

- 2. Вычислить значение энергии кристаллической решетки NaCl U $_{\rm pem}$ (в Дж/моль) , если постоянная n, характеризующая потенциал сил отталкивания, равна 9,4, а постоянная Маделунга A=1,75. Постоянная решетки NaCl равна a= 5,62 Å.
- 3. Рассчитать внутреннюю энергию m = 200 г каменной соли, постоянная кристаллической решетки, которой равна a = 5,64 Å. Постоянная сил отталкивания n = 9,4.
- 4. Как изменится равновесное расстояние r0 между ионами и энергия решетки NaCl, если заряд иона возрастет вдвое?
- 5. Известно, что в кристалле, в котором связи обусловлены силами Ван-дер-Ваальса, равновесное межатомное расстояние $r_0 = 1,50 \text{ Å}$, а энергия на 10% меньше, чем в

случае, когда учитываются только силы притяжения. Чему равна характерная длина р, входящая в выражение:

$$U = -\frac{A}{r^6} + B \exp\left(-\frac{r}{\rho}\right).$$

Промежуточная аттестация

ОПК-1. Способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности.

Знать: основные модели задач в рамках дисциплины с учетом их границ применимости.

Уметь: грамотно использовать в профессиональной деятельности базовые знания физики конденсированного состояния, создавать модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей.

Владеть: методами использования в профессиональной деятельности базовых знаний физики конденсированного состояния для создания моделей типовых профессиональных задач и интерпретации полученных результатов с учетом границ применимости моделей.

Задания, необходимые для оценивания сформированности ОПК-1 Перечень вопросов для зачета с оценкой

- 1. Конденсированные состояния. Основные типы конденсированных систем.
- 2. Термодинамический и статистический подход к изучению макроскопических конденсированных систем.
- 3. Симметрия. Элементы и преобразования симметрии.
- 4. Точечные и пространственные группы симметрии. Решетки Браве и предельные группы Кюри.
- 5. Ближний и дальний порядок. Взаимоотношение симметрии системы и ее упорядоченности. Нарушение симметрии и квазисредние. Аморфное состояние вещества.
- 6. Экспериментальные методы исследования структуры и физических свойств конденсированных систем. Дифракционный структурный анализ. Рентгенография кристаллических, жидкокристаллических, жидких и аморфных систем.
- 7. Уравнения Лауэ и формула Вульфа-Брэгга. Структурный фактор и радиальная функция распределения.
- 8. Основы квантовой теории межатомных и межмолекулярных взаимодействий. Приближение Борна ¬ Оппенгеймера. Обменные взаимодействия.
- 9. Теория возмущений и мультипольные разложения. Парные и многочастичные взаимодействия. Модельные потенциалы взаимодействий.
- 10. Современные методы статистической теории конденсированного состояния.

- 11. Математическое моделирование конденсированных систем. Методы Монте-Карло и молекулярной динамики.
- 12. Твердые тела. Аморфные и кристаллические тела. Дальний порядок в кристаллах. Поликристаллы и мозаичность. Классификация кристаллов по типу связей, анизотропия кристаллов.
- 13. Упругие свойства кристаллов. Тензоры напряжений и деформаций. Распространение акустических волн в совершенных кристаллах; скорость звука и определение упругих модулей.
- 14. Классическая теория скорости и поглощения звука в кристаллах. Термодинамическая теория термической релаксации. Динамика кристаллической решетки. Упругие волны, смещения атомов и фононы.
- 15. Ангармонизм и тепловое расширение. Теплоемкость кристаллов. Классическая теория и эксперимент. Закон Дюлонга и Пти. Модели Эйнштейна и Дебая. Основы квантовых представлений.
- 16. Квантовые кристаллы. Квантовые жидкости. Бозе-конденсация. Сверхтекучесть гелия.
- 17. Куперовские пары. Сверхпроводимость. Эффект Мейснера. Эффект Джозефсона. Применение сверхпроводимости.
- 18. Состояния электронов в кристаллической решетке. Зоны Бриллюэна, энергетические зоны. Поверхность Ферми.
- 19. Псевдопотенциал.
- 20. Примеси и примесные уровни. Дефекты.
- 21. Квазичастицы. Акустические и оптические фононы, плазмоны, экситоны Френкеля и Ванье.
- 22. Теория простых жидкостей. Ближний порядок. Фундаментальные эксперименты.
- 23. Поверхностный слой. Поверхностное натяжение. Смачивание.
- 24. Фазовые переходы и их классификация. Фазовые диаграммы. Уравнение Клапейрона Клаузиуса. Диаграмма равновесия твердой и жидкой фаз. Плавление и кристаллизация. Полиморфные и полимезоморфные превращения.
- 25. Стекла. Температура стеклования. Спиновые стекла.
- 26. Термотропные и лиотропные жидкие кристаллы и их классификация. Полимезоморфизм.
- 27. Электрические, оптические, магнитные, реологические и акустические свойства жидких кристаллов и их применение.
- 28. Полимеры. Жидкокристаллические полимеры. Классификация, физические свойства и применение.
- 29. Особенности структуры и физических свойств систем пониженной размерности. Тонкие пленки. Общие представления о нанотехнологиях.
- 30. Проблема создания материалов с заданными физическими свойствами.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Требования к зачету с оценкой

Ответ обучающегося на зачёте с оценкой оценивается в баллах с учетом шкалы соответствия рейтинговых оценок пятибалльным оценкам.

Шкала оценивания зачета с оценкой.

Критерии оценивания	Баллы	
Полные и точные ответы на вопросы Свободное владение основными	21-30	
терминами и понятиями курса; последовательное и логичное изложение		
материала курса; законченные выводы и обобщения по теме вопросов;		
исчерпывающие ответы на вопросы при сдаче зачета с оценкой.		
Полные и точные ответы вопросы. Знание основных терминов и понятий	15-20	
курса; последовательное изложение материала курса; умение		
формулировать некоторые обобщения по теме вопросов; достаточно		
полные ответы на вопросы при сдаче зачета с оценкой.		
Полный и точный ответ на один вопрос. Удовлетворительное знание	8-14	
основных терминов и понятий курса; удовлетворительное знание и		
владение методами и средствами решения задач; недостаточно		
последовательное изложение материала курса; умение формулировать		
отдельные выводы и обобщения по теме вопросов.		
неполный и неточный ответ на один вопрос билета и менее.	0-7	

Итоговая шкала выставления оценки по дисциплине.

Итоговая оценка по дисциплине выставляется по приведенной ниже шкале. При выставлении итоговой оценки преподавателем учитывается работа обучающегося в течение всего срока освоения дисциплины, а также баллы на промежуточной аттестации.

Баллы, полученные магистрантами в	Оценка по дисциплине
течение освоения дисциплины	
81 – 100	отлично
61 – 80	хорошо
41 - 60	удовлетворительно
0 - 40	неудовлетворительно