Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 24.10.2024 14:21:41

Уникальный программный ключ:

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

6b5279da4e034bff6791728B3da5ba7bh58ff689дарственное бюджетное образовательное учреждение высшего образования

«FOCУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ» (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОСВЕЩЕНИЯ)

Физико-математический факультет Кафедра фундаментальной физики и нанотехнологии

Согласовано

леканом факультета

Рабочая программа дисциплины

Статистическая физика

Направление подготовки 03.03.02 Физика

Профиль: Теоретическая и математическая физика

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой физико-математического факультета

Протокол « 29 » С6 2023 г. № 10 Председатель УМКом / Кулешова Ю.Д./

фундаментальной физики и

нанотехнологии

Протокол от «<u>25</u> » <u>05</u> 2023 г. № <u>13</u> Зав. кафедрой <u>СА</u>

Мытищи 2023

Автор-составитель:

Камалов Тимур Фянович, кандидат физико-математических наук, доцент кафедры фундаментальной физики и нанотехнологии

Рабочая программа дисциплины «Статистическая физика» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению 03.03.02 Физика, утвержденного приказом МИНОБР-НАУКИ РОССИИ от 07.08.2020 г. № 891.

Дисциплина входит в модуль «Теоретическая физика» обязательной части Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Год начала подготовки (по учебному плану) 2023

СОДЕРЖАНИЕ

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ	1
2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	1
3. ОБЪЁМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	1
4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ	6
5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ	10
6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	17
7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	18
8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	18
9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	19

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Цели дисциплины «Статистическая физика»: ознакомление студентов с концептуальными основами дисциплины «Статистическая физика» как современной комплексной фундаментальной науки; формирование естественнонаучного мировоззрения на основе знания особенностей, основных принципов и закономерностей развития Вселенной; интеллектуальное развитие студентов через систему классических и современных естественнонаучных концепций.

Задачи дисциплины: ознакомить студентов с основными проблемами, закономерностями, историей и тенденциями развития статистической физики, в которых раскрываются фундаментальные научные проблемы современной науки; сформировать понимание принципов преемственности, соответствия и непрерывности в изучении природы; дать представление о революциях в физике и смене научных мировоззрений как ключевых этапах развития естествознания; сформировать понимание сущности фундаментальных законов природы, определяющих облик современного естествознания, к которым сводится множество законов физики; сформировать знания, необходимые для изучения смежных дисциплин; расширить кругозор, сформировать научное мышление и научное мировоззрение, основанное на синтезе естественнонаучных и гуманитарных концепций.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ОПК-1. Способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности;

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в модуль «Теоретическая физика» обязательной части Блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Основу для изучения дисциплины составляет программа по общему курсу физики, разделам теоретической физики: «Теоретическая механика», «Механика сплошных сред», «Электродинамика», «Квантовая теория», «Физика конденсированного состояния».

Знание современных фундаментальных научных положений естествознания, его мировоззренческих и методологических выводов является необходимым элементом подготовки специалистов в любой области деятельности.

Знания и навыки, полученные при изучении дисциплины, дадут возможность студентам осваивать такие дисциплины учебного плана, как «Физическая кинетика» и «Введение в физику макромолекул и полимеров», на качественно более высоком уровне.

3. ОБЪЁМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объём дисциплины

Показатель объёма дисциплины	Очная форма обучения
Объём дисциплины в зачётных единицах	4
Объём дисциплины в часах	144
Контактная работа:	92,3
Лекции	30
Практические занятия	60
из них, в форме практической подготовки	60
Контактные часы на промежуточную аттеста-	2,3
цию:	
Экзамен	0,3
Предэкзаменационная консультация	2

Самостоятельная работа	42
Контроль	9,7

Формой промежуточной аттестации является экзамен в 7 семестре.

3.2. Содержание дисциплины

3.2. Содержание дисциплины		Количеств	о часов
			ческие занятия
Наименование разделов (тем) дисциплины с кратким содержанием	Лекции	Общее кол-во	из них, в форме практической подготовки
Тема 1. Введение. Макросистемы. Статистический и термодинамический способы описания макросистемы. Равновесные и неравновесные системы Понятие макросистемы. Статистическое распределение. Статистическая независимость. Статистическая матрица. Температура. Макроскопическое движение. Адиабатический процесс. Давление. Работа и количество тепла. Тепловая функция. Свободная энергия и термодинамический потенциал. Соотношения между производными термодинамических величин. Термодинамическая шкала температур	2	4	4
Тема 2. Фазовое пространство. Квазиклассическое приближение Обобщённые координаты. Фазовый объем. Квазиклассическое приближение. Флуктуации	2	4	4
Тема 3. Теорема Лиувилля. Роль энергии в статистической физике Статистический ансамбль. Стационарное течение «газа» в 2s-мер-ном фазовом пространстве. Теорема Лиувилля. Роль энергии в статистической физике	2	4	4
Тема 4. Энтропия, её статистический смысл Распределение вероятностей по энергии. Квантовые состояния. Статистический вес. Связь статистического веса со средней энергией. Связь энтропии со статистическим весом. Связь энтропии с функцией распределения. Закон возрастания энтропии и его физическая интерпретация	2	6	6
Тема 5. Распределение Гиббса. Температура, её свойства Микроканоническое распределение. Каноническое распределение. Распределение Максвелла. Свободная энергия в распределении Гиббса. Температура, её свойства. Вывод термодинамических соотношений из распределения Гиббса	2	4	4

Тема 6. Условия равновесия макросистемы во внешнем поле. Идеальный газ. Распределение Больцмана Распределение Больцмана. Распределение Больцмана в классической статистике. Неравновесный идеальный газ. Свободная энергия больцмановского идеального газа. Уравнение состояния идеального газа. Распределение средней энергии идеального газа.	2	6	6
ального газа по степеням свободы. Внутренняя энергия.			
Тема 7. Распределение Гиббса с переменным числом частиц (классический случай). Зависимость термодинамических величин от числа частиц Зависимость функции распределения от числа частиц. Зависимость термодинамического потенциала от числа частиц и энергии. Распределение Гиббса с переменным числом частиц. Статистическая сумма и статистический интеграл	3	4	4
Тема 8. Основные положения квантовой статистики. Принцип Паули Основные положения квантовой статистики. Вычисление статистической суммы макросистемы в квантовой статистике. Распределение Гиббса с переменным числом частиц (квантовый случай). Принцип Паули. Его применение в квантовой статистике	3	6	6
Тема 9. Распределение Ферми. Вырожденный электронный газ. Распределение Бозе Распределение Ферми. Распределение Бозе. Неравновесные Ферми- и Бозе-газы. Вырожденный электронный газ. Теплоёмкость вырожденного электронного газа. Релятивистский вырожденный электронный газ	3	4	4
Тема 10. Чёрное излучение. Формула Планка. Формула Рэлея –Джинса Ферми- и Бозе-газы элементарных частиц. Вырожденный Бозе-газ. Чёрное излучение. Термодинамические величины чёрного излучения. Формула Планка. Формула Рэлея-Джинса	3	6	6
Тема 11. Теория идеальных и неидеальных систем Идеальный газ. Отклонение газов от идеальности. Полностью ионизированный газ. Метод корреляционных функций. Квантовомеханическое вычисление вириального коэффициента. Вырожденный «почти идеальный» Бозе-газ. Вырожденный «почти идеальный» Ферми-газ	3	6	6

Тема 12. Теория флуктуаций Распределение Гаусса. Флуктуации основных термодинамических величин. Флуктуации в идеальном газе. Формула Пуассона. Флуктуации в растворах. Корреляция флуктуаций. Флуктуации в критической точке. Корреляция флуктуаций во времени	3	6	6
итого:	30	60	60

ПРАКТИЧЕСКАЯ ПОДГОТОВКА

Тема	Задание на практическую подготовку	количество часов
Тема 1. Введение. Макросистемы. Статистический и термодинамический способы описания макросистемы. Равновесные и неравновесные системы	Понятие макросистемы. Статистическое распределение. Статистическая независимость. Статистическая матрица. Температура. Макроскопическое движение. Адиабатический процесс. Давление. Работа и количество тепла. Тепловая функция. Свободная энергия и термодинамический потенциал. Соотношения между производными термодинамических величин. Термодинамическая шкала температур	4
Тема 2. Фазовое пространство. Квазиклассическое приближение	Обобщённые координаты. Фазовый объем. Квазиклассическое приближение. Флуктуации	4
Тема 3. Теорема Лиувилля. Роль энергии в статистической физике	Статистический ансамбль. Стационарное течение «газа» в 2sмер-ном фазовом пространстве. Теорема Лиувилля. Роль энергии в статистической физике	4
Тема 4. Энтропия, её стати- стический смысл	Распределение вероятностей по энергии. Квантовые состояния. Статистический вес. Связь статистического веса со средней энергией. Связь энтропии со статистическим весом. Связь энтропии с функцией распределения. Закон возрастания энтропии и его физическая интерпретация	6
Тема 5. Распределение Гибб- са. Температура, её свойства	Микроканоническое распределение. Каноническое распределение. Распределение Максвелла. Свободная энергия в распределении Гиббса. Температу-	4

		T
	ра, её свойства. Вывод термо-	
	динамических соотношений из	
	распределения Гиббса	
	Распределение Больцмана. Рас-	
	пределение Больцмана в клас-	
	сической статистике. Неравно-	
Тема 6. Условия равновесия	весный идеальный газ. Свобод-	
макросистемы во внешнем	ная энергия больцмановского	
поле. Идеальный газ. Распре-	идеального газа. Уравнение со-	6
деление Больцмана	стояния идеального газа. Рас-	
	пределение средней энергии	
	идеального газа по степеням	
	свободы. Внутренняя энергия.	
	Зависимость функции распре-	
	деления от числа частиц. Зави-	
Тема 7. Распределение Гиббса	симость термодинамического	
с переменным числом частиц	потенциала от числа частиц и	
(классический случай). Зави-		4
симость термодинамических	энергии. Распределение Гиббса с переменным числом частиц.	
величин от числа частиц	<u> </u>	
·	Статистическая сумма и стати-	
	Стический интеграл	
	Основные положения кванто-	
	вой статистики. Вычисление	
T. 0.0	статистической суммы макро-	
Тема 8. Основные положения	системы в квантовой статисти-	_
квантовой статистики. Прин-	ке. Распределение Гиббса с пе-	6
цип Паули	ременным числом частиц	
	(квантовый случай). Принцип	
	Паули. Его применение в кван-	
	товой статистике	
	Распределение Ферми. Распре-	
	деление Бозе. Неравновесные	
Тема 9. Распределение Ферми.	Ферми- и Бозе-газы. Вырож-	
Вырожденный электронный	денный электронный газ. Теп-	4
газ. Распределение Бозе	лоёмкость вырожденного элек-	
_	тронного газа. Релятивистский	
	вырожденный электронный газ	
	Ферми- и Бозе-газы элементар-	
Т 10 П"	ных частиц. Вырожденный Бо-	
Тема 10. Чёрное излучение.	зе-газ. Чёрное излучение. Тер-	
Формула Планка. Формула	модинамические величины чёр-	6
Рэлея –Джинса	ного излучения. Формула	
	Планка. Формула Рэлея-Джинса	
	Идеальный газ. Отклонение га-	
Тема 11. Теория идеальных и неидеальных систем	зов от идеальности. Полностью	
	ионизированный газ. Метод	
	корреляционных функций.	
	Квантовомеханическое вычис-	6
		U
	ление вириального коэффици-	
	ента. Вырожденный «почти	
	идеальный» Бозе-газ. Вырож-	
	денный «почти идеальный»	

	Ферми-газ	
Тема 12. Теория флуктуаций	Распределение Гаусса. Флуктуации основных термодинамических величин. Флуктуации в идеальном газе. Формула Пуассона. Флуктуации в растворах. Корреляция флуктуаций. Флуктуации в критической точке. Корреляция флуктуаций в идеальном газе. Корреляция флуктуаций во времени	6

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Макроси- стемы. Ста- тистический и термоди- намический способы описания макросисте- мы. Равно- весные и неравновсс- ные системы Статистическое рас- пределение. Стати- стическая независи- мость. Статистиче- ская матрица. Тем- пература. Макро- скопическое движе- ние 2 Работа с литера- том, кон- сульта- ции Л.Д. Ландау, Е.М. Лифшиц. Статисти- ческая физика. Кон- спект, решён- шён- ные Фазовое простран- ство. Ква- зиклассиче- ское при- ближение Фазовый объем. Квазиклассическое приближение. 2 Работа с литера- турой и ческой физике. 2012. Л.Д. Ландау, Е.М. механики, термоди- намики и кинетики. 2008. Кон- спект, решён- шён- механики, термоди- намики и кинетики. 2010. Фазовое простран- ство. Ква- зиклассиче- ское при- ближение Фазовый объем. Квазиклассическое приближение. 2 Работа с литера- турой и интерне- том, кон- сульта- ции Л.Д. Ландау, Е.М. механики и кинетики. 2012. Кон- спект, решён- шён- механики, термоди- намики и кинетики. 2010. 4 Фазовый объем. Квазиклассическое приближение. 2 Работа с литера- турой и интерне- том, кон- сульта- ции Л.Д. Ландау, Е.М. Механики, термоди- намики и кинетики. 2010. Кон- спект, решён- шён- механики, термоди- намики и кинетики. 2008. ные задачи 4 4 4 4 7 Д.Д. Ландау, Е.М. Л.Д. Ландау, Е.М. Л.Ф. Щеголев. Эле- менты статисти- ческай физике. 2010. 8 1 4 4 4 4 4	Темы для	Изучаемые вопро-	Ко-	Формы	Методические	Фор-
Макроси- стемы. Ста- тистический и термоди- намический способы описания макросисте- мы. Равно- весные и неравновсс- ные системы Статистическое рас- пределение. Стати- стическая независи- мость. Статистиче- ская матрица. Тем- пература. Макро- скопическое движе- ние 2 Работа с литера- том, кон- сульта- ции Л.Д. Ландау, Е.М. Лифшиц. Статисти- ческая физика. Кон- спект, решён- шён- ные Фазовое простран- ство. Ква- зиклассиче- ское при- ближение Фазовый объем. Квазиклассическое приближение. 2 Работа с литера- турой и ческой физике. 2012. Л.Д. Ландау, Е.М. механики, термоди- намики и кинетики. 2008. Кон- спект, решён- шён- механики, термоди- намики и кинетики. 2010. Фазовое простран- ство. Ква- зиклассиче- ское при- ближение Фазовый объем. Квазиклассическое приближение. 2 Работа с литера- турой и интерне- том, кон- сульта- ции Л.Д. Ландау, Е.М. механики и кинетики. 2012. Кон- спект, решён- шён- механики, термоди- намики и кинетики. 2010. 4 Фазовый объем. Квазиклассическое приближение. 2 Работа с литера- турой и интерне- том, кон- сульта- ции Л.Д. Ландау, Е.М. Механики, термоди- намики и кинетики. 2010. Кон- спект, решён- шён- механики, термоди- намики и кинетики. 2008. ные задачи 4 4 4 4 7 Д.Д. Ландау, Е.М. Л.Д. Ландау, Е.М. Л.Ф. Щеголев. Эле- менты статисти- ческай физике. 2010. 8 1 4 4 4 4 4	самостоя-	сы	личе-	само-	обеспечения	МЫ
Макроси- стемы. Ста- тистический и термоди- намический способы описания макросистеные и неравновес- ные системы Фазовое простран- ство. Ква- зиклассиче- ское при- ближение Фазовый объем. Статистическое дыжение ближение Фазовое простран- ство. Ква- зиклассиче- ское при- ближение Фазовый объем. Статистическое дыжение ближение Фазовое простран- ство. Ква- зиклассиче- ское при- ближение Фазовый объем. Статистическое дыжение ближение Фазовое простран- ство. Ква- зиклассиче- ское при- ближение Фазовый объем. Статистическое дыжение ближение Фазовый объем. Статистическое при- ближение Фазовый объем. Статистической плижение Фазовый объем. Статистической прижение Фазовый объем. Статистической плижение Фазовое простран- ство. Ква- литера- пом, кон- сульта- пии Фазовый объем. Статистической физика. 2012. Физический энцик- лопедический опытациенской физике. 2010. И.Ф. Щеголев. Эле- менты статистической плиженые Пиф. Памарау, Е.М. Кон- плиженые прибименые объем. Казаники, термоди- намики и кинетики. 2010. И.Ф. Щеголев. Эле- метатистической физика. 2010. И.Ф. Щеголев. Эле- метатистической физика. 2010. И.Ф. Щеголев. Эле- метатистической физика. 2010. И.Ф. Щеголев. Эле- метатистическо	тельного		ство	стоя-		отчёт-
Макроси- стемы. Ста- тистический и термоди- намический способы описания макросистемы. Равно- весные и неравновес- ные системы Статистическое рас- пределение. Стати- стическая независи- мость. Статистиче- кая матрица. Тем- пература. Макро- скопическое движе- ние 1 Работа с литера- турой и интерне- том, кон- сульта- ции Л.Д. Ландау, Е.М. Лифшиц. Статисти- ческая физика. 2010. Кон- спект, решён- ные Фазовое простран- ство. Ква- зиклассиче- ское при- ближение Фазовый объем. Флуктуации 2 Работа с литера- турой и интерне- том, кон- сульта- ции Л.Д. Ландау, Е.М. Лифшиц. Статисти- ческая физика. 2010. Кон- спект, решён- менты статистической механики, термоди- намики и кинетики. 2012. Фазовое простран- ское при- ближение Фазовый объем. Мазиклассическое смое при- ближение 2 Работа с литера- турой и интерне- том, кон- сульта- ции Л.Д. Ландау, Е.М. И.Ф. Шеголев. Эле- менты статистической механики, термоди- намики и кинетики. 2010. Кон- спект, решён- мета статисти- ческая физика. 2010. Кон- спект, решён- мета статистической механики, термоди- намики и кинетики. 2010. Кон- спект, решён- мета статистической механики, термоди- намики и кинетики. 2010. Кон- спект, решён- мета статистической механики, термоди- намики и кинетики. 2010. Вон- мета статистической механики, термоди- намики и кинетики. 2010. Вон- мета статистической механики, термоди- намики и кинетики. 2010. Вон- мета и кинетики. 2010. Вон- мета и кинетики. 2012. Вон- мета и кинетики. 2012. Вон- мета и кинетики. 2012. Вон- мета и кинетики. 2013.	изучения		часов	тельной		ности
тистический и термоди- намический способы описания макросисте- мы. Равно- весные и неравновесные системы				работы		
Фазовое простран- квазиклассическое приближение Флуктуации Разовата с турой и интернеское приближение Сульта- ции механики, термодинамики и кинетики. 2008. А.Н. Голов. Сборник задач по статистической физике. 2012. Физический энциклопедический сло-	стемы. Статистический и термодинамический способы описания макросистемы. Равновесные и неравновес-	пределение. Стати- стическая независи- мость. Статистиче- ская матрица. Тем- пература. Макро- скопическое движе-	2	литера- турой и интерне- том, кон- сульта-	Лифшиц. Статистическая физика. 2010. И.Ф. Щеголев. Элементы статистической механики, термодинамики и кинетики. 2008. А.Н. Голов. Сборник задач по статистической физике. 2012.	спект, решён- шён- ные
Теорема Ли- Статистический ан- 2 Работа с Л.Д. Ландау, Е.М. Кон-	простран- ство. Ква- зиклассиче- ское при-	Квазиклассическое приближение.	2	литера- турой и интерне- том, кон- сульта-	варь Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика. 2010. И.Ф. Щеголев. Элементы статистической механики, термодинамики и кинетики. 2008. А.Н. Голов. Сборник задач по статистической физике. 2012. Физический энциклопедический словарь	спект, решён- шён- ные

~				п 1	
увилля. Роль	самбль. Стационар-		литера-	Лифшиц. Статисти-	спект,
энергии в	ное течение «газа» в		турой и	ческая физика.	решён-
статистиче-	2s-мерном фазовом		интерне-	2010.	шён-
ской физике	пространстве. Тео-		том, кон-	И.Ф. Щеголев. Эле-	ные
	рема Лиувилля		сульта-	менты статистической	задачи
			ции	механики, термоди-	
				намики и кинетики. 2008.	
				А.Н. Голов. Сборник	
				задач по статистиче-	
				ской физике. 2012.	
				Физический энцик-	
				лопедический сло-	
				варь.	
				Х. Киракосян.	
				Структурная физика. 2011.	
Энтропия, её	Энтропия и термо-	4	Работа с	Л.Д. Ландау, Е.М.	Кон-
статистиче-	динамическая веро-		литера-	Лифшиц. Статисти-	спект,
ский смысл.	ятность. Связь эн-		турой и	ческая физика.	решён-
	тропии со статисти-		интерне-	2010.	шён-
	ческим весом. Связь		том, кон-	И.Ф. Щеголев. Эле-	ные
	энтропии с функци-		сульта-	менты статистической	задачи
	ей распределения.		ции	механики, термоди-	
	Закон возрастания			намики и кинетики.	
	энтропии и его фи-			2008.	
	зическая интерпре-			А.Н. Голов. Сборник	
	тация			задач по статисти-	
				ческой физике. 2012. Физический энцик-	
				лопедический сло-	
Распределе-	Распределение	4	Работа с	варь Л.Д. Ландау, Е.М.	Кон-
ние Гиббса.	Максвелла. Свобод-	4	литера-	Лифшиц. Статисти-	спект,
Температу-	ная энергия в рас-		турой и	ческая физика.	решён-
ра, её свой-	пределении Гиббса.		интерне-	2010.	шён-
ства	Температура, её		том, кон-	И.Ф. Щеголев. Эле-	ные
	свойства. Вывод		сульта-	менты статистической	задачи
	термодинамических		ции	механики, термоди-	
	соотношений из			намики и кинетики.	
	распределения Гиб-			2008.	
	бса			А.Н. Голов. Сборник	
				задач по статистиче-	
				ской физике. 2012.	
				Физический энцик-	
				лопедический сло-	
				варь	
Условия	Распределение	4	Работа с	Л.Д. Ландау, Е.М.	Кон-
равновесия	Больцмана. Распре-		литера-	Лифшиц. Статисти-	спект,
макросисте-	деление Больцмана		турой и	ческая физика.	решён-
мы во внеш-	в классической ста-		интерне-	2010.	шён-
нем поле.	тистике. Неравно-		том, кон-	И.Ф. Щеголев. Эле-	ные

11 ~				ا ا	1
Идеальный	весный идеальный		сульта-	менты статистической	задачи
газ. Распре-	газ. Свободная энер-		ции	механики, термоди-	
деление	гия больцмановско-			намики и кинетики.	
Больцмана	го идеального газа.			2008.	
	Уравнение состоя-			А.Н. Голов. Сборник	
	ния идеального газа.			задач по статистиче-	
	Распределение			ской физике. 2012.	
	средней энергии			Физический энцик-	
	идеального газа по			лопедический сло-	
	степеням свободы.			варь	
	Внутренняя энергия				
Распределе-	Зависимость функ-	4	Работа с	Л.Д. Ландау, Е.М.	Кон-
ние Гиббса с	ции распределения		литера-	Лифшиц. Статисти-	спект,
переменным	от числа частиц.		турой и	ческая физика.	решён-
числом ча-	Зависимость термо-		интерне-	2010.	шён-
стиц (клас-	динамического по-		том, кон-	И.Ф. Щеголев. Эле-	ные
сический	тенциала от числа		сульта-	менты статистической	задачи
случай). За-	частиц и энергии.		ции	механики, термоди-	
висимость	Распределение Гиб-			намики и кинетики.	
термодина-	бса с переменным			2008.	
мических	числом частиц. Ста-			А.Н. Голов. Сборник	
величин от	тистическая сумма и			задач по статистиче-	
числа частиц	статистический ин-			ской физике. 2012.	
	теграл			Физический энцик-	
				лопедический сло-	
				варь	
Основные	Основные положе-	4	Работа с	Л.Д. Ландау, Е.М.	Кон-
положения	ния квантовой ста-		литера-	Лифшиц. Статисти-	спект,
квантовой	тистики. Вычисле-		турой и	ческая физика.	решён-
статистики.	ние статистической		интерне-	2010.	шён-
Принцип	суммы макросисте-		том, кон-	И.Ф. Щеголев. Эле-	ные
Паули	мы в квантовой ста-		сульта-	менты статистической	задачи
	тистике. Распреде-		ции	механики, термоди-	
	ление Гиббса с пе-			намики и кинетики.	
	ременным числом			2008.	
	частиц (квантовый			А.Н. Голов. Сборник	
	случай)			задач по статистиче-	
				ской физике. 2012.	
				Физический энцик-	
				лопедический сло-	
				варь.	
				А.К. Дадиванян,	
				Д.Н. Чаусов. Ближ-	
				ний ориентационный	
				порядок в растворах	
				полимеров. 2012.	
Распределе-	Распределение	4	Работа с	Л.Д. Ландау, Е.М.	Кон-
ние Ферми.	Ферми. Распределе-		литера-	Лифшиц. Статисти-	спект,
Вырожден-	ние Бозе. Неравно-		турой и	ческая физика.	решён-
ный элек-	весные Ферми- и		интерне-	2010.	шён-
ныи элек-	_		- I		_
тронный газ.	Бозе-газы. Вырож-		том, кон-	И.Ф. Щеголев. Эле-	ные

тио Горс	ный газ. Теплоём-		шш	MOVOLILIMI TOPMO TI	
ние Бозе	ныи газ. 1 еплоем-кость вырожденного		ции	механики, термоди- намики и кинетики.	
	электронного газа.			2008.	
	Релятивистский вы-			А.Н. Голов. Сборник	
	рожденный элек-			задач по статистиче-	
	тронный газ			ской физике. 2012.	
	троппын таз			Физический энцик-	
				лопедический сло-	
				варь	
Чёрное из-	Ферми- и Бозе-газы	4	Работа с	Л.Д. Ландау, Е.М.	Кон-
лучение.	элементарных ча-	•	литера-	Лифшиц. Статисти-	спект,
Формула	стиц. Вырожден-		турой и	ческая физика.	решён-
Планка.	ный Бозе-газ. Чёр-		интерне-	2010.	шён-
Формула	ное излучение. Тер-		том, кон-	И.Ф. Щеголев. Эле-	ные
Рэлея –	модинамические ве-		сульта-	менты статистиче-	задачи
Джинса	личины чёрного из-		ции	ской механики,	
Джинеа	лучения. Формула			термодинамики и	
	Планка. Формула			кинетики. 2008.	
	Рэлея-Джинса			Физический энцик-	
	толом данной			лопедический сло-	
				варь	
Теория иде-	Идеальный газ. От-	4	Работа с	Л.Д. Ландау, Е.М.	Кон-
альных и	клонение газов от		литера-	Лифшиц. Статисти-	спект,
неидеальных	идеальности Кван-		турой и	ческая физика.	решён-
систем	товомеханическое		интерне-	2010.	шён-
	вычисление вири-		том, кон-	И.Ф. Щеголев. Эле-	ные
	ального коэффици-		сульта-	менты статистиче-	задачи
	ента. Вырожденный		ции	ской механики,	
	«почти идеальный»			термодинамики и	
	Бозе-газ. Вырож-			кинетики. 2008.	
	денный «почти иде-			А.Н. Голов. Сбор-	
	альный» Ферми-газ			ник задач по стати-	
				стической физике.	
				2012.	
				Физический энцик-	
				лопедический сло-	
				варь.	
				А.К. Дадиванян,	
				Д.Н. Чаусов. Ближ-	
				ний ориентацион-	
				ный порядок в рас-	
				творах полимеров. 2012.	
T	D	4	Работа с	Л.Д. Ландау, Е.М.	Кон-
Теория	Распределение	4	литера-	Лифшиц. Статисти-	спект,
флуктуаций	Гаусса. Флуктуации		турой и	ческая физика.	решён-
	основных термоди-		интерне-	2010.	шён-
	намических вели-		том, кон-	И.Ф. Щеголев. Эле-	ные
	чин. Флуктуации в идеальном газе.		сульта-	менты статистической	
	идеальном газе. Флуктуации в рас-		ции	механики, термоди-	зиди ти
	творах. Корреляция			намики и кинетики.	
	флуктуаций в иде-			2008.	
	флуктуации в иде-			2000.	

	альном газе. Корре-		А.Н. Голов. Сборник	
	ляция флуктуаций		задач по статистиче-	
	во времени		ской физике. 2012.	
			Физический энцик-	
			лопедический сло-	
			варь	
итого		42		

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕ-ЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования
ОПК-1. Способен применять базовые	1. Работа на учебных занятиях.
знания в области физико-математических	2. Самостоятельная работа.
и (или) естественных наук в сфере своей	
профессиональной деятельности;	

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оце-	Уровень	Этапы форми-	Описание	Критерии	Шкала
нива-	сформи-	рования	показателей	оценивания	оцени-
емые	рованно-				вания
ком-	сти				
петен					
тен-					
ции					
ОПК-	Порого-	1. Работа на	знать основные модели задач	доклад, реше-	Шкала
1	вый	учебных заня-	в рамках дисциплины с уче-	ние задач, до-	оцени-
		тиях.	том их границ применимости;	машнее зада-	вания
		2. Самостоя-	уметь грамотно использовать	ние	доклада,
		тельная рабо-	в профессиональной деятель-		шкала
		та.	ности базовые знания фунда-		оцени-
			ментальных разделов матема-		вания
			тики, создавать математиче-		решения
			ские модели типовых профес-		задач,
			сиональных задач и интер-		шкала
			претировать полученные ре-		оцени-
			зультаты с учетом границ		вания
			применимости моделей		домаш-
					него за-
	_				дания
	Продви-	1. Работа на	знать основные модели задач	доклад, реше-	Шкала
	нутый	учебных заня-	в рамках дисциплины с уче-	ние задач, до-	оцени-
		тиях.	том их границ применимости;	машнее зада-	вания
		2. Самостоя-	уметь грамотно использовать	ние, практи-	доклада,
		тельная рабо-	в профессиональной деятель-	ческая подго-	шкала
		та.	ности базовые знания фунда-	товка	оцени-
			ментальных разделов матема-		вания
			тики, создавать математиче-		решения
			ские модели типовых профес-		задач,

сиональных задач и интер-	шкала
претировать полученные ре-	оцени-
зультаты с учетом границ	вания
применимости моделей	домаш-
владеть методами использо-	него за-
вания в профессиональной	дания
деятельности базовых знаний	
фундаментальных разделов	
математики для создания ма-	
тематических моделей типо-	
вых профессиональных задач	
и интерпретации полученных	
результатов с учетом границ	
применимости моделей	

Шкала оценивания практической подготовки

	Критерии оценивания	Баллы
1.	практическое задание выполнено в установленный срок с использованием рекомендаций преподавателя;	
2.	показан высокий уровень знания изученного материала по заданной теме,	2.10
3.	умение глубоко анализировать проблему и делать обобщающие практикоориентированные выводы;	8-10
4.	работа выполнена без ошибок и недочетов или допущено не более одного недочета.	
1.	практическое задание выполнено в установленный срок с использованием рекомендаций преподавателя;	
2.	показан хороший уровень владения изученным материалом по заданной теме,	5-7
	работа выполнена полностью, но допущено в ней: не более одной негрубой ошибки и одного недочета	
	или не более двух недочетов.	
1.	практическое задание выполнено в установленный срок с частичным использованием рекомендаций преподавателя;	2-4
2.	продемонстрированы минимальные знания по основным темам изученного материала.	2-4
1.	число ошибок и недочетов превосходит норму, при которой может быть	
	выставлена оценка «удовлетворительно» или если правильно выполнено менее половины задания;	0-1
2.	если обучающийся не приступал к выполнению задания или правильно выполнил не более 10 процентов всех заданий.	

Шкала и критерии оценивания написания доклада

Уровни оценивания	Критерии оценивания	Баллы
Высокий(отлично)	Если студент отобразил в докладе 71-90% выбранной	8-10
	темы.	
Оптимальный(хорошо)	Если студент отобразил в докладе 51-70% выбранной	5-7
	темы	
<i>Удовлетворительный</i>	Если студент отобразил в докладе 31-50% выбранной	2-4
	темы	
Неудовлетворительный	Если студент отобразил в докладе 0-30% выбранной	0-1
_	темы	

Шкала и критерии оценивания решения задач

Уровни оценивания	Критерии оценивания	Баллы
Высокий(отлично)	Если студент решил 71-90% от всех задач	8-10
Оптимальный(хорошо)	Если студент решил 51-70% от всех задач	5-7
<i>Удовлетворительный</i>	Если студент решил 31-50% от всех задач	2-4
Неудовлетворительный	Если студент решил 0-30% от всех задач	0-1

Шкала и критерии оценивания домашних работ

Уровни оценивания	Критерии оценивания	Баллы
Высокий(отлично)	Если студент решил 71-90% от всех домашних работ	8-10
Оптимальный(хорошо)	Если студент решил 51-70% от всех домашних работ	5-7
<i>Удовлетворительный</i>	Если студент решил 31-50% от всех домашних работ	2-4
Неудовлетворительный	Если студент решил 0-30% от всех домашних работ	0-1

Шкала и критерии оценивания практических проверочных работ

Критерии оценивания	Баллы
Студент решил задачу и показал полное и уверенное знание темы задания	5
Студент решил задачу, однако в решении имеются несущественные ошибки, недостатки и недочёты	4
Студент в целом решил задачу, но в решении имеются заметные и грубые ошибки, недостатки и недочёты	3
Студент не решил задачу, но имеются более двух правильных идей или подходов к решению задачи	2
Студент не решил задачу, но имеются только одна – две идеи или подходы к решению задачи	1
Студент не решил задачу и показал полное незнание темы задания	0

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примеры домашних заданий

- 1. Частица массы m=1 движется в потенциале $V(x)=x^4-x^2$. Найти точки равновесия системы $(\dot{p}=\dot{x}=0)$ и исследовать вид фазовых траекторий в окрестности этих точек. Изобразить графически потенциал и фазовые траектории системы.
- 2. Две одинаковые частицы совершают одномерное движение в «ящике» длиной L, испытывая абсолютно упругие соударения друг с другом и со стенками. Пусть в начальный момент времени частицы расположены у противоположных стенок, а скорости их v_1 и v_2 направлены навстречу друг другу. Нарисовать фазовую траекторию одной из частиц для нескольких значений отношения v_1/v_2 (1;2;3;...).
- 3. Для частицы с массой m, двигающейся в кубе с ребром L, испытывая упругие соударения на стенках, найти число квантово-механических состояний с энергиями, мень-

шими E, и сравнить его с соответствующим объёмом фазового пространства. Показать, что последний является адиабатическим инвариантом, т.е. не меняется при медленном расширении или сжатии куба.

- 4. Какова вероятность того, что при случайном измерении положения частицы, совершающей гармонические колебания по закону $x = x_0 \cdot \cos(\omega t)$, положение частицы окажется в интервале (x, x + dx)? Вычислить $\langle x^2 \rangle$.
- 5. В каждом из N_0 узлов решётки может находиться либо 0, либо 1 атом. Пусть N атомов случайно распределены по узлам. Найти число расположений $g(N_0, N)$ атомов по узлам, вероятность p(R, n) того, что в R узлах решётки адсорбировано n атомов, среднее значение <n> и среднее значение $<(\Delta n)^2>$, где $\Delta n=n-<n>$. Убедиться, что при n малых p(R, n) переходит в распределение Пуассона.
- 6. Частица, находящаяся в исходный момент в начале координат, делает в следующий момент скачок на единицу либо вправо, либо влево с одинаковой вероятностью. Определить вероятность $p_n(l)$ того, что через n шагов частица окажется в точке l одномерной решётки. Рассмотреть предельный случай больших n. Полагая средний интервал времени между скачками равным t_0 , переписать результат в виде вероятности попадания частицы в точку x через время $t = nt_0$. Обобщить результаты на случай блуждания по двумерной квадратной и трёхмерной кубической решёткам.
- 7. Полимерная цепочка состоит из N элементов длины ρ , каждый из которых может быть с одинаковой вероятностью направлен вправо или влево, так что два соседних элемента представляются либо так: $\rightarrow \rightarrow$, либо так: \leftrightarrow . Найти вероятность того, что длина полимера (расстояние по прямой от хвоста первого элемента до вершины N-го элемента) равна $l\rho$. Найти среднюю длину полимера.
 - 8. Пусть $g = CE^N$, где C константа. Найти энергию как функцию температуры.
- 9. Найти энтропию системы N линейных осцилляторов с частотой ω , температуру как функцию энергии, а также энергию, энтропию и химический потенциал как функцию температуры. Нарисовать соответствующие графики.
- 10. Большая статсумма системы известна как функция τ , V, μ . Найти среднюю энергию и среднее число частиц в системе.

Примеры вариантов задач

б) 3*N*

a) *N*

Вариант 1

B) 3(N-1)

2. Чему равно a) 3	число обобщённы б) 6	ых импульсов твёрдого тела $8)\ 3N$	а, состоящего из N частиц?
3. Каким число <i>N</i> микрочастиц?	ом переменных х	арактеризуется точка фазон	вого пространства системы из
a) 2N	б) 3N	в) 6N	

1. Чему равно число степеней свободы N невзаимодействующих частиц?

4. Найти площадь, охватываемую фазовой траекторией, в случае гармонического осциллятора массы m, колеблющегося с частотой ω и амплитудой A.

a) $\pi \omega m A^2$	6) $\frac{1}{2}\pi\omega mA^2$	в) $\pi\omega^2 mA^2$

5. Чему равна площадь между соседними фазовыми траекториями при движении частицы массы m в потенциальном ящике со стороной a?

a) mh	б) <i>h</i>	B) mh/a
,	,	/

6.	Чему равен объег а) <i>h</i>	м фазовой ячей $6) h^6$	йки для 12-м в) <i>h</i> ¹²		ого пространства?
	Чему равно числ ами состояний Φ_1		твенно?	_	ух независимых подсистем с
	a) $\Phi_1 + \Phi_2$	δ) $\Phi_1\Phi_2$		B) $(\Phi_1 + \Phi_2)$	$(2)^2$
8.	Как зависит квад $a) \sim N$	ратичная флун $6) \sim N^2$	стуация от чи в	исла частиц с $N \sim N^{S}$	истемы <i>N</i> ?
			Вариа	нт 2	
1.	Как зависит отно $a) \sim N$		/ктуация от ч	исла частиц $(B) \sim N^{S}$	системы N?
	Как связана энтр в систему?				есами подсистем $\Delta\Phi_i$, входя-
	a) $S = \sum_{i} \ln \Delta \Phi_{i}$		$\delta) S = \prod_{i} \ln s$	1 $\Delta\Phi_i$	$S = \frac{\sum_{i} \ln \Delta \Phi_{i}}{\prod_{i} \ln \Delta \Phi_{i}}$
3.	Чему равно среди $e^{-S(\overline{E})}$	нее расстояние		нями подсис	
	Как зависит фунг ределения?	кция распреде.	ления от тем	пературы Т в	з случае микроканонического
Pwen	a) $\sim T$	6) $\sim \exp(-T)$)	в) не зави	исит от T
	Как зависит фунг ния Гиббса?	кция распреде.	пения от энер	огии Е и тем	мпературы T в случае распре-
	a) $\sim \exp(-E/L)$	k_BT)	δ) $\sim \exp(E)$	$/k_BT$)	$B) \sim \exp(-k_BT/E)$
	распределения Ма	ксвелла? (Т-	температура	$m_0 - \text{macca}$	
	a) $c(v) \sim ex$ B) $c(v) \sim v^2$	$\exp(-m_0v^2/2k_BT)$ $\exp(-m_0v^2/2k_BT)$	$(k_{\rm B}T)$	δ) c(v)	$\sim \upsilon \exp(-m_0 \upsilon^2 / 2k_{\rm B}T)$
	лы для системы, с	остоящей из Л	<i>I</i> молекул, пр	и температуј	
	a) $3 k_{\rm B} T / 2$	б) 3	$3N k_{\rm B}T/2$		B) $k_{\rm B}T/2$
	В статистике Боз а) больше нуля	е – Эйнштейн б) меньше		й потенциал в) равен н	улю
]	Примерные темь	і докладов			
	Бозе – Эйнштенс				
2.	Смешанные сост	ояния и матри	ца плотности	ſ.	

3. Парамагнетизм Паули и диамагнетизм Ландау.

5. Теплоёмкость вырожденного электронного газа.

4. Растворы сильных электролитов.

- 6. Теплоёмкость твёрдых тел при низких температурах.
- 7. Вириальное разложение термодинамических потенциалов.
- 8. Термодинамика классической плазмы.

Примерные вопросы для экзамена

- 1. Макросистемы. Статистический и термодинамический способы описания макросистемы.
 - 2. Термодинамические параметры. Равновесные и неравновесные системы.
 - 3. Фазовое пространство. Квазиклассическое приближение.
 - 4. Нормировка и средние значения в статистической физике. Флуктуации.
 - 5. Теорема Лиувилля.
 - 6. Энтропия, её статистический смысл.
 - 7. Закон возрастания энтропии и его физическая интерпретация.
 - 8. Распределение Гиббса.
 - 9. Распределение Максвелла как следствие распределения Гиббса.
 - 10. Распределение Больцмана.
 - 11. Распределение Гиббса с переменным числом частиц (классический случай).
 - 12. Статистическая сумма и статистический интеграл.
 - 13. Основные положения квантовой статистики.
 - 14. Распределение Гиббса с переменным числом частиц (квантовый случай).
 - 15. Принцип Паули. Его применение в квантовой статистике.
 - 16. Распределение Ферми.
 - 17. Распределение Бозе.
 - 18. Чёрное излучение. Формула Планка. Формула Рэлея-Джинса
 - 19. Закон Кирхгофа.
- 20. Вывод термодинамических соотношений из распределения Гиббса.

Задание на практическую подготовку

- 1. Выполнение измерений на лабораторном оборудовании.
- 2. Выступление с докладом по исследуемой тематике.
- 3. Участие в экспериментальной работе совместно с сотрудниками лабораторий.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Сопоставимость рейтинговых показателей студента по разным дисциплинам и Балльно-рейтинговой системы оценки успеваемости студентов обеспечивается принятием единого механизма оценки знаний студентов, выраженного в баллах, согласно которому 100 баллов — это полное усвоение знаний по учебной дисциплине, соответствующее требованиям учебной программы.

Максимальный результат, который может быть достигнут студентом по каждому из Блоков рейтинговой оценки — 100 баллов.

Шкала соответствия рейтинговых оценок пятибалльным оценкам:

100-81 баллов — «отлично» (5); 80-61 баллов — «хорошо» (4); 60-41 баллов — «удовлетворительно» (3); до 40 баллов — «неудовлетворительно».

В зачётно-экзаменационную ведомость и зачётную книжку выставляются оценки по пятибалльной шкале и рейтинговые оценки в баллах.

При получении студентом на экзамене неудовлетворительной оценки в ведомость выставляется рейтинговая оценка в баллах (<40 баллов), соответствующая фактическим знаниям (ответу) студента.

Критерии оценки знаний студентов в рамках каждой учебной дисциплины или

групп дисциплин вырабатываются преподавателями согласованно на кафедрах Университета исходя из требований образовательных стандартов.

Шкала оценивания экзамена

Уровни оценивания	Критерии оценивания	Баллы	
Высокий	Полные и точные ответы на два вопроса экзаменаци-	21-30	
	онного билета. Свободное владение основными терми-		
	нами и понятиями курса; последовательное и логичное		
	изложение материала курса; законченные выводы и		
	обобщения по теме вопросов; исчерпывающие ответы		
	на вопросы при сдаче экзамена.		
Оптимальный	Полные и точные ответы на два вопроса экзаменаци-	14-20	
	онного билета. Знание основных терминов и понятий		
	курса; последовательное изложение материала курса;		
	умение формулировать некоторые обобщения по теме вопросов; достаточно полные ответы на вопросы при сдаче экзамена.		
<i>Удовлетворительный</i>	Полный и точный ответ на один вопрос экзаменацион-	8-13	
	ного билета. Удовлетворительное знание основных		
	терминов и понятий курса; удовлетворительное знание		
	и владение методами и средствами решения задач; не-		
	достаточно последовательное изложение материала		
	курса; умение формулировать отдельные выводы и		
	обобщения по теме вопросов.		
Неудовлетворительный	Полный и точный ответ на один вопрос экзаменацион-	0 - 7	
	ного билета и менее.		

Итоговая шкала выставления оценки по дисциплине.

Ответ обучающегося на экзамене оценивается в баллах с учетом шкалы соответствия рейтинговых оценок пятибалльным оценкам.

Оценка по 5-балльной системе		Оценка по 100-балльной системе		
5	Отлично	81 – 100		
4	Хорошо	61 – 80		
3	Удовлетворительно	41 – 60		
2	Неудовлетворительно	0 - 40		

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 6.1. Основная литература

- 1. Ансельм, А. И. Основы статистической физики и термодинамики : учебное пособие. 2-е изд. Санкт-Петербург : Лань, 2022. 448 с. Текст : электронный. URL: https://e.lanbook.com/book/210215
- 2. Бондарев, Б. В. Курс общей физики в 3 кн. Книга 3: термодинамика, статистическая физика, строение вещества: учебник для вузов / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. 2-е изд. Москва: Юрайт, 2023. 369 с. Текст: электронный. URL: https://urait.ru/bcode/532034
- 3. Ефремов, Ю. С. Статистическая физика и термодинамика : учебное пособие для вузов . 2-е изд. Москва : Юрайт, 2023. 209 с. Текст : электронный. URL: https://urait.ru/bcode/514993

6.2. Дополнительная литература

1. Арнольд, 3. Термодинамика и статистическая физика. — Москва : Институт компьютерных исследований, 2019. — 480 с. — Текст : электронный . — URL:

https://www.iprbookshop.ru/92115.html

- 2. Байков, В. И. Теплофизика. Термодинамика и статистическая физика : учебное пособие / В. И. Байков, Н. В. Павлюкевич. Минск : Выш. школа, 2018. 448 с.. Текст : электронный. URL: https://www.iprbookshop.ru/90839.html
- 3. Березин, Ф. А. Лекции по статистической физике. 2-е изд. Москва: Институт компьютерных исследований, 2019. 192 с. Текст : электронный. URL: https://www.iprbookshop.ru/91949.html
- 4. Голов, А.Н. Сборник задач по статистической физике : (с крат.теорией и решениями) : учеб.пособие для физ.-мат.фак. / А. Н. Голов, Ю. И. Яламов. М. : МГОУ, 2012. 150с. Текст: непосредственный
- 5. Московский, С. Б. Курс статистической физики и термодинамики : учебник. Москва : Академический Проект, 2020. 320 с. Текст : электронный. URL: https://e.lanbook.com/book/133213
- 6. Никеров, В. А. Физика: учебник и практикум для вузов. Москва: Юрайт, 2022. 415 с. Текст: электронный. URL: https://urait.ru/bcode/489259

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. http://mgou.ru/index.php?option=com_content&task=view&id=48&Itemid=614
- 2. Научная электронная библиотека http://elibrary.ru

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1. Методические рекомендации по подготовке к практическим занятиям.
- 2. Методические рекомендации по организации самостоятельной работы по дисциплинам.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows Microsoft Office Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных

<u>fgosvo.ru – Портал Федеральных государственных образовательных стандартов высшего образования pravo.gov.ru - Официальный интернет-портал правовой информации</u> www.edu.ru – Федеральный портал Российское образование

Свободно распространяемое программное обеспечение, в том числе отечественного производства ОМС Плеер (для воспроизведения Электронных Учебных Модулей) 7-zip

Google Chrome

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения учебных занятий, оснащенные оборудованием и техническими средствами обучения: учебной мебелью, доской, демонстрационным оборудованием, персональными компьютерами, проектором;
- помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключением к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде.