Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Дата подписания: 24.10.2024 14:21:4 МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ бюджетное образовательное учреждение высшего образования Уникальный прогремеральное государственное бюджетное образовательное учреждение высшего образования 6b5279da4e034bff679172803da5b7b559fc69e2 (государственный университет просвещения)

Физико-математический факультет Кафедра фундаментальной физики и нанотехнологии

Согласовано

деканом факультета

« 29 » <u>(6) 2023 г.</u> /Кулешова Ю.Д./

Рабочая программа дисциплины

Введение в физику жидких кристаллов

Направление подготовки 03.03.02 Физика

Профиль:

Теоретическая и математическая физика

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой физико-математического факультета

Протокол «<u>29</u>» <u>66</u> 2023 г. № <u>//</u> Председатель УМКом <u>// Куле́щова Ю.Д./</u>

нанотехнологии

фундаментальной физики и

Протокол от «<u>25</u>» <u>05</u> 2023 г. № <u>/3</u> Зав. кафедрой <u>///</u> Холина С.А./

Мытищи 2023

Авторы-составители:

Барабанова Н.Н., кандидат физико-математических наук, доцент, Васильчикова Е.Н., кандидат физико-математических наук, доцент, Емельянов В.А., кандидат физико-математических наук, доцент, Емельянова Ю.А., ассистент кафедры общей физики.

Рабочая программа дисциплины «Введение в физику жидких кристаллов» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 03.03.02 Физика, утвержденного приказом МИНОБРНАУКИ РОССИИ от 07.08.2020 г. № 891.

Дисциплина входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)», и является элективной дисциплиной.

Год начала подготовки (по учебному плану) 2023

СОДЕРЖАНИЕ

1	Планируемые результаты обучения	4
2	Место дисциплины в структуре образовательной программы	4
3	Объем и содержание дисциплины	5
4	Учебно-методическое обеспечение самостоятельной работы обучающихся	7
5	Фонд оценочных средств для проведения текущей и промежуточной	
	аттестации по дисциплине	8
6	Учебно-методическое и ресурсное обеспечение дисциплины	14
7	Методические указания по освоению дисциплины	15
8	Информационные технологии для осуществления образовательного	
	процесса по дисциплине	15
9	Материально-техническое обеспечение лисшиллины	15

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины

Цель освоения дисциплины: ознакомление студентов с концептуальными основами современной физики жидких кристаллов и ее общими принципами, и методами; формирование и совершенствование у студентов навыков экспериментальной деятельности.

Задачи дисциплины: изучение основных понятий, общих принципов, законов физики жидких кристаллов; овладение методами решения физических задач, относящихся к разделу «Физика жидких кристаллов», приобретение навыков осуществления учебного и научного эксперимент.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ДПК-2. Способен освоить современные концепции, теории, законы и методы в области физики, математики и информатики, овладеть основными методами решения задач, сформулированными в рамках данных предметных областей, и применить их в профессиональной деятельности

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Физика жидких кристаллов» входит в часть, формируемую участниками образовательных отношений Блока 1 «Дисциплины (модули)»,и является эдективной дисциплиной.

Для освоения дисциплины «Физика жидких кристаллов» используются знания, умения и навыки, сформированные в процессе изучения следующих дисциплин: «Химия», «Молекулярная физика», «Электричество и магнетизм», «Оптика». Освоение данной дисциплины является необходимой основой для изучения таких дисциплин, как, «Специальный физический практикум», «Физика конденсированного состояния», «Физическая кинетика»

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	2
Объем дисциплины в часах	72
Контактная работа:	46.2
Лекции	16
Лабораторные занятия	30
из них, в форме практической подготовки	30
Контактные часы на промежуточную аттестацию:	0,2
Зачет	0,2
Самостоятельная работа	18
Контроль	7,8

Формой промежуточной аттестации является зачет в 4 семестре.

3.2. Содержание дисциплины

Наименование разделов (тем)	Количество часов		
с кратким содержанием	Лекции	Лабораторные занятия	

		Общее кол- во	из них, в форме практическо й подготовки
Тема 1. Жидкие кристаллы, анизотропные жидкости. История открытия, химическое строение мезоморфных молекул, гомологические ряды. Жидкокристаллические смеси.	1	2	2
Тема 2. Симметрия. Элементы и преобразования симметрии. Точечные и пространственные группы симметрии.	2	2	2
Тема 3. Ближний и дальний порядки. Ориентационный и трансляционный порядки. Ближний и дальний порядки. Иерархия пространственных масштабов структуры вещества и упорядоченности.	1	2	2
Тема 4. Симметрия и упорядоченность. Взаимоотношение симметрии системы и ее упорядоченности. Нарушение симметрии и квазисредние. Жидкокристаллическое состояние вещества.	1	2	2
Тема 5. Классификация жидких кристаллов. Термотропные и лиотропные жидкие кристаллы и их классификация. Каламитики и дискотики. Экзотические мезофазы полярных молекул. Амфифильные молекулы. Мицеллы и температура Крафта.	1	2	2
Тема 6. Экспериментальные методы исследования физических свойств и применение жидких кристаллов. Электрические, оптические, магнитные, реологические и акустические свойства жидких кристаллов и их применение.	1	2	2
Тема 7. Континуальная теория жидких кристаллов. Теория ориентационной упругости нематических и холестерических жидких кристаллов. Модули ориентационной упругости Франка. Упругие свойства смектиков.	2	2	2
Тема 8. Диамагнитные и диэлектрические свойства жидких кристаллов. Ориентирующее влияние электрических и магнитных полей и ограничивающих поверхностей на жидкие кристаллы. Граничные условия и методы ориентации жидких кристаллов. Переходы Фредерикса.	1	2	2
Тема 9. Дефекты и текстуры. Дефекты в нематиках. Дисклинации, ядра, стенки. Индексы Франка. Дефекты в холестериках и смектиках. Текстуры.	1	2	2

Тема 10. Гидродинамика нематических и холестерических жидких кристаллов. Гидродинамика нематиков и холестериков Лесли-Эриксена. Коэффициенты Лесли. Коэффициенты сдвиговой и объемной вязкостей. Вращательная вязкость.	1	2	2
Тема 11. Теория упругости и гидродинамика	2	4	4
смектиков. Теория упругости и гидродинамика смектиков A, В и C. Флуктуационная неустойчивость дальнего порядка в гидродинамическом пределе в смектиках A и C. Стабилизирующее воздействие внешних полей и поверхностей.			
Тема 12. Поведение нематиков и смектиков С в	1	4	4
изменяющихся магнитных полях. Пульсирующие, вращающиеся, конические поля. Магнитоакустика жидких кристаллов.			
Тема 13. Жидкокристаллические полимеры.	1	2	2
Классификация, физические свойства и применение.			
Итого:	16	30	30

практическая подготовка

Тема	Задание на практическую подготовку	количество часов
Тема 1. Жидкие кристаллы,	Выполнение лабораторной	2
анизотропные жидкости.	работы	2
-	раооты	
1		
гомологические ряды. Жидкокристаллические смеси.		
1	Dryng gygyng goffengranya	2
Тема 2. Симметрия.	Выполнение лабораторной	2
Элементы и преобразования	работы	
симметрии. Точечные и		
пространственные группы		
симметрии.		
Тема 3. Ближний и дальний	Выполнение лабораторной	2
порядки.	работы	
Ориентационный и трансляционный		
порядки. Ближний и дальний		
порядки. Иерархия		
пространственных масштабов		
структуры вещества и		
упорядоченности.		
Тема 4. Симметрия и	Выполнение лабораторной	2
упорядоченность.	работы	
Взаимоотношение симметрии		
системы и ее упорядоченности.		
Нарушение симметрии и		
квазисредние.		
Жидкокристаллическое состояние		
вещества.		

Тема 5. Классификация жидких	Выполнение лабораторной	2
-		2
кристаллов.	работы	
Термотропные и лиотропные жидкие		
кристаллы и их классификация.		
Каламитики и дискотики.		
Экзотические мезофазы полярных		
молекул. Амфифильные молекулы.		
Мицеллы и температура Крафта.		
Тема 6. Экспериментальные	Выполнение лабораторной	2
методы исследования физических	работы	
свойств и применение жидких		
кристаллов.		
Электрические, оптические,		
магнитные, реологические и		
акустические свойства жидких		
кристаллов и их применение.		
Тема 7. Континуальная теория	Выполнение лабораторной	2
жидких кристаллов.	работы	_
Теория ориентационной упругости	F	
нематических и холестерических		
жидких кристаллов. Модули		
ориентационной упругости Франка.		
Упругие свойства смектиков.		
	Drygo gyayya gabanananya y	2
r 1	Выполнение лабораторной	2
диэлектрические свойства жидких	работы	
кристаллов.		
Ориентирующее влияние		
электрических и магнитных полей и		
ограничивающих поверхностей на		
жидкие кристаллы. Граничные		
условия и методы ориентации		
жидких кристаллов. Переходы		
Фредерикса.		
Тема 9. Дефекты и текстуры.	Выполнение лабораторной	2
Дефекты в нематиках. Дисклинации,	работы	
ядра, стенки. Индексы Франка.		
Дефекты в холестериках и		
смектиках. Текстуры.		
Тема 10. Гидродинамика	Выполнение лабораторной	2
нематических и холестерических	работы	
жидких кристаллов.	-	
Гидродинамика нематиков и		
холестериков Лесли-Эриксена.		
Коэффициенты Лесли.		
Коэффициенты сдвиговой и		
объемной вязкостей. Вращательная		
вязкость.		
Тема 11. Теория упругости и	Выполнение лабораторной	4
гидродинамика смектиков.	работы	7
-	Pacorbi	
Теория упругости и гидродинамика		
смектиков А, В и С. Флуктуационная		
неустойчивость дальнего порядка в		
гидродинамическом пределе в		
смектиках А и С. Стабилизирующее		

воздействие внешних полей и		
поверхностей.		
Тема 12. Поведение нематиков и	Выполнение лабораторной	4
смектиков С в изменяющихся	работы	
магнитных полях. Пульсирующие,		
вращающиеся, конические поля.		
Магнитоакустика жидких		
кристаллов.		
Тема 13. Жидкокристаллические	Выполнение лабораторной	2
полимеры.	работы	
Классификация, физические		
свойства и применение.		

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для самостоятельно го изучения	Изучаемые вопросы	Колич ество часов	Формы самостоятель ной работы	Методичес кие обеспечен ия	Формы отчетнос ти
Тема 1. Жидкие кристаллы, анизотропные жидкости.	Гомологические ряды.	1	Работа с литературой, конспект, решение задач	Рекоменду емая литература. [1], [2], [9].	Конспект, решенные задачи, доклад, презентация.
Тема 2. Симметрия.	Пространственны е группы симметрии.	1	Работа с литературой, конспект, решение задач	Рекоменду емая литература. [10]. Ресурсы Интернет	Конспект, решенные задачи, доклад, презентац ия
Тема 3. Ближний и дальний порядки.	Ближний ориентационный порядок в ЖК полимерах.	1	Работа с литературой, конспект, решение задач	Рекоменду емая литература. . [1], [2], [9], [10]. Ресурсы Интернет	Конспект, решенные задачи, доклад, презентац ия.
Тема 4. Симметрия и упорядоченност ь.	Симметрия и порядок в лиотропных ЖК.	1	Работа с литературой, конспект, решение задач	Рекоменду емая литература. . [1], [8], [9], [10].	Конспект, решенные задачи, доклад, презентация.
Тема 5. Классификация жидких кристаллов.	Экзотические мезофазы полярных молекул.	1	Работа с литературой, конспект, решение задач	Рекоменду емая литература. . [1], [2]. Ресурсы Интернет	Конспект, решенные задачи, доклад, презентация.
Тема 6. Эксперименталь ные методы исследования	Акустические свойства жидких кристаллов и их применение.	1	Работа с литературой, конспект, решение	Рекоменду емая литература [2], [5],	Конспект, решенные задачи, доклад,

физических свойств и применение жидких			задач	[9].	презентация.
кристаллов. Тема 7. Континуальная теория жидких кристаллов.	Теория ориентационной упругости холестерических жидких	1	Работа с литературой, конспект, решение задач	Рекоменду емая литература [1], [2], [8], [9],	Конспект, решенные задачи, доклад, презентац
Тема 8. Диамагнитные и диэлектрически е свойства жидких кристаллов.	кристаллов. Методы ориентации холестерических жидких кристаллов.	1	Работа с литературой, конспект, решение задач	[10]. Рекоменду емая литература [1], [2].	ия. Конспект, решенные задачи, доклад, презентац ия.
Тема 9. Дефекты и текстуры.	Дефекты и текстуры в холестериках.	2	Работа с литературой, конспект, решение задач	Рекоменду емая литература. . [1], [2]. Ресурсы Интернет	Конспект, решенные задачи, доклад, презентация.
Тема 10. Гидродинамика нематических и холестерических жидких кристаллов.	Гидродинамика холестериков.	2	Работа с литературой, конспект, решение задач	Рекоменду емая литература [1], [2]. Ресурсы Интернет	Конспект, решенные задачи, доклад, презентация.
Тема 11. Теория упругости и гидродинамика смектиков.	Флуктуации в смектике С.	2	Работа с литературой, конспект, решение задач	Рекоменду емая литература. . [1], [8], [9], [10]. Ресурсы Интернет	Конспект, решенные задачи, доклад, презентац ия.
Тема 12. Поведение нематиков и смектиков С в изменяющихся магнитных полях.	Магнито- акустический гистерезис.	2	Работа с литературой, конспект, решение задач	Рекоменду емая литература [5]. Ресурсы Интернет	Конспект, решенные задачи, доклад, презентац ия.
Тема 13. Жидкокристалл ические полимеры.	Применение жидкокристаллич еских полимеров.	2	Работа с литературой, конспект, решение задач	Рекоменду емая литература. . [1], [2], [3]. Ресурсы Интернет	Конспект, решенные задачи, доклад, презентация.
Итого		18			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования
ДПК-2. Способен освоить современные	1. Работа на учебных занятиях.
концепции, теории, законы и методы в	2. Самостоятельная работа.
области физики, математики и	
информатики, овладеть основными	
методами решения задач,	
сформулированными в рамках данных	
предметных областей, и применить их в	
профессиональной деятельности	

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания Оцен Уровень Этапы Описание Критерии Шкала

Оцен	Уровень	Этапы	Описание	Критерии	Шкала
ивае	сформиро	формирования	показателей	оценивания	оценива
мые	ванности				ния
комп					
етенц					
ИИ					
ДПК-	Пороговы	1. Работа на	знать основные модели задач	доклад,	Шкала
2	й	учебных	в рамках дисциплины с	домашнее	оценива
		занятиях.	учетом их границ	задание	ния
		2.	применимости;		доклада
		Самостоятель	уметь грамотно использовать		Шкала
		ная работа.	в профессиональной		оценива
			деятельности базовые знания		ния
			фундаментальных разделов		домашн
			математики, создавать		его
			математические модели		задания
			типовых профессиональных		
			задач и интерпретировать		
			полученные результаты с		
			учетом границ применимости		
			моделей		
	Продвину	1. Работа на	знать основные модели задач	доклад,	Шкала
	тый	учебных	в рамках дисциплины с	домашнее	оценива
		занятиях.	учетом их границ	задание,	кин
		2.	применимости;	практическая	доклада
		Самостоятель	уметь грамотно использовать	подготовка	Шкала
		ная работа.	в профессиональной		оценива
			деятельности базовые знания		кин
			фундаментальных разделов		домашн
			математики, создавать		его
			математические модели		задания
			типовых профессиональных		Шкала
			задач и интерпретировать		оценива
			полученные результаты с		ния
			учетом границ применимости		практич
			моделей		еской
			владеть методами		подгото
			использования в		ВКИ
			профессиональной		
			деятельности базовых знаний		

фундаментальных разделов	
математики для создания	
математических моделей	
типовых профессиональных	
задач и интерпретации	
полученных результатов с	
учетом границ применимости	
моделей	

Шкала и критерии оценивания написания доклада

Уровни оценивания	Критерии оценивания	Баллы
Высокий(отлично)	Если студент отобразил в докладе 71-90% выбранной	8-10
	темы.	
Оптимальный(хорошо)	Если студент отобразил в докладе 51-70% выбранной	5-7
	темы	
<i>Удовлетворительный</i>	Если студент отобразил в докладе 31-50% выбранной	2-4
	темы	
Неудовлетворительный	Если студент отобразил в докладе 0-30% выбранной	0-1
	темы	

Шкала и критерии оценивания практической подготовки

Уровни оценивания	Критерии оценивания	Баллы
Высокий(отлично)	Если студент выполнил 71-90% от всех лабораторных	16-20
	работ	
Оптимальный(хорошо)	Если студент выполнил 51-70% от всех лабораторных	11-15
	работ	
<i>Удовлетворительный</i>	Если студент выполнил 31-50% от всех лабораторных	6-10
	работ	
Неудовлетворительный	Если студент выполнил 0-30% от всех лабораторных	0-5
	работ	

Шкала и критерии оценивания ломашних работ

Уровни оценивания	Критерии оценивания	Баллы
Высокий(отлично)	Если студент решил 71-90% от всех домашних работ	8-10
Оптимальный(хорошо)	Если студент решил 51-70% от всех домашних работ	5-7
<i>Удовлетворительный</i>	Если студент решил 31-50% от всех домашних работ	2-4
Неудовлетворительный	Если студент решил 0-30% от всех домашних работ	0-1

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные варианты домашних заданий

- 1. Найти элементы точечной симметрии нематического жидкого кристалла.
- 2. Найти элементы пространственной симметрии смектика А.
- 3. Найти предельную группу Кюри для однородного электрического поля.
- 4. Найти предельную группу Кюри для локально однородного магнитного поля.
- 5. Какие элементы симметрии несовместимы с геликоидальной структурой холестериков?
- 6. Какие жидкокристаллические фазы могут обладать сегнетоэлектрическими свойствами?

- 7. Определение жидкокристаллического состояния.
- 8. Параметры ориентационного и трансляционного порядков.
- 9. Может ли превращение изотропной жидкости в нематик быть фазовым переходом второго рода?
- 10. Какие мезофазы не могут одновременно присутствовать на фазовой диаграмме одного вещества?
- 11. Какие экспериментальные методы позволяют изучать физические свойства объемных образцов жидких кристаллов?

Задание на практическую подготовку

Выполнение лабораторных работ:

- 1. Лабораторная работа №1. Изучение текстур и фазовых переходов жидких кристаллов.
- 2. Лабораторная работа №2. Изучение электропроводности нематических жидких кристаллов.
- 3. Лабораторная работа №3. Изучение электрогидродинамической неустойчивости в нематических жидких кристаллах.
- 4. Лабораторная работа № 4. Изучение эффекта финамического рассеяния света в жидких кристаллах.
- 5. Лабораторная работа № 5. Определение дисперсии двулучепреломления нематического жидкого кристалла.
 - 6. Лабораторная работа № 6. Изучение перехода Фредерикса.

Примерные темы докладов

- 1. Импульсно-фазовый метод измерения акустических параметров.
- 2. Экспериментальная установка для измерения диэлектрической проницаемости в диапазоне низких частот.
- 3. Скорость и поглощение ультразвука в НЖК в окрестности перехода в изотропное состояние.
- 4. Диэлектрические свойства нематиков в СВЧ диапазоне.
- 5. Анизотропия диэлектрической проницаемости ориентированных нематических жидких кристаллов.
- 6. Диэлектрические свойства нематических жидких кристаллов во вращающемся магнитном поле.
- 7. Установка для измерения диэлектрической проницаемости в пульсирующем магнитном поле.
- 8. Индукционные зависимости поглощения ультразвука для стационарного магнитного поля при различных температурах.
- 9. Экспериментальная установка исследования ориентационной релаксации НЖК во вращающемся магнитном поле.
- 10. Экспериментальные исследования ориентационной релаксации в пульсирующем магнитном поле.
- 11. Измерение анизотропии скорости в нематических жидких кристаллах
- 12. Измерение частотной зависимости анизотропии поглощения ультразвука в НЖК.
- 13. Экспериментальные исследования диэлектрических и диамагнитных свойств НЖК в скрещенных электрических и магнитных полях.
- 14. Импульсно-фазовый метод измерения акустических параметров.
- 15. Экспериментальная установка для измерения диэлектрической проницаемости в диапазоне низких частот.
- 16. Скорость и поглощение ультразвука в НЖК в окрестности перехода в изотропное состояние.
- 17. Диэлектрические свойства нематиков в СВЧ диапазоне.
- 18. Анизотропия диэлектрической проницаемости ориентированных нематических жидких кристаллов.

- 19. Диэлектрические свойства нематических жидких кристаллов во вращающемся магнитном поле.
- 20. Установка для измерения диэлектрической проницаемости в пульсирующем магнитном поле.
- 21. Индукционные зависимости поглощения ультразвука для стационарного магнитного поля при различных температурах.
- 22. Экспериментальная установка исследования ориентационной релаксации НЖК во вращающемся магнитном поле.
- 23. Экспериментальные исследования ориентационной релаксации в пульсирующем магнитном поле.
- 24. Измерение анизотропии скорости в нематических жидких кристаллах
- 25. Измерение частотной зависимости анизотропии поглощения ультразвука в НЖК.
- 26. Экспериментальные исследования диэлектрических и диамагнитных свойств НЖК в скрещенных электрических и магнитных полях.
- 27. Сегнетоэлектрические жидкие кристаллы.
- 28. Теоремы Кюри и жидкие кристаллы.
- 29. Симметрия и законы сохранения в физике жидких кристаллов.
- 30. Магнитоакустические свойства жидких кристаллов.
- 31. Пьезоэлектрические жидкие кристаллы.
- 32. Многочастичные взаимодействия в жидких кристаллах.
- 33. Классификация жидких кристаллов.
- 34. Ближний и дальний порядок в жидких кристаллах.
- 35. Дефекты в жидких кристаллах.
- 36. Жидкие кристаллы в электрических и магнитных полях.
- 37. Лиотропные жидкие кристаллы.
- 38. Динамика жидких кристаллов.
- 39. Ультразвуковые методы исследования жидких кристаллов.
- 40. Математическое моделирование мезофаз.

Примерные вопросы к зачету

- 1. Жидкие кристаллы, анизотропные жидкости. История открытия, химическое строение мезоморфных молекул, гомологические ряды.
 - 2. Точечные и пространственные группы симметрии.
 - 3. Ориентационный и трансляционный порядки. Ближний и дальний порядки.
 - 4. Классификация жидких кристаллов. Термотропные и лиотропные жидкие кристаллы.
- 5. Лиотропные жидкие кристаллы. Амфифильные молекулы. Мицеллы и температура Крафта. Классификация Лузатти.
- 6. Электрические, оптические, магнитные, реологические и акустические свойства жидких кристаллов и их применение.
 - 7. Континуальная теория жидких кристаллов. Упругие свойства смектиков.
- 8. Ориентирующее влияние электрических и магнитных полей и ограничивающих поверхностей на жидкие кристаллы. Граничные условия и методы ориентации жидких кристаллов. Переходы Фредерикса.
- 9. Гидродинамика нематических жидких кристаллов Лесли-Эриксена. Коэффициенты Лесли. Коэффициенты сдвиговой и объемной вязкостей.
 - 10. Симметрия. Элементы и преобразования симметрии.
 - 11. Симметрия и физические свойства. Теоремы Кюри.
- 12. Взаимоотношение симметрии системы и ее упорядоченности. Жидкокристаллическое состояние вещества.
- 13. Термотропные жидкие кристаллы и их классификация. Каламитики и дискотики. Экзотические мезофазы полярных молекул.
 - 14. Полимезоморфизм и молекулярные модели мезофаз.
- 15. Экспериментальные методы исследования физических свойств и применение жидких кристаллов.

- 16. Континуальная теория жидких кристаллов. Теория ориентационной упругости нематических жидких кристаллов. Модули ориентационной упругости Франка.
 - 17. Диамагнитные и диэлектрические свойства нематических жидких кристаллов.
 - 18. Дефекты в нематиках. Дисклинации, ядра, стенки. Индексы Франка.
- 19. Вращательная вязкость. Поведение нематиков в вращающихся магнитных полях.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Оценивание степени освоения обучающимися дисциплины осуществляется на основе «Положение о балльно-рейтинговой системе оценки успеваемости студентов университета».

Сопоставимость рейтинговых показателей студента по разным дисциплинам и Балльнорейтинговой системы оценки успеваемости студентов обеспечивается принятием единого механизма оценки знаний студентов, выраженного в баллах, согласно которому 100 баллов это полное усвоение знаний по учебной дисциплине, соответствующее требованиям учебной программы.

Максимальный результат, который может быть достигнут студентом по каждому из Блоков рейтинговой оценки — 100 баллов.

Ответ обучающегося на экзамене оценивается в баллах с учетом шкалы соответствия рейтинговых оценок пятибалльным оценкам.

В зачетно-экзаменационную ведомость и зачетную книжку выставляются оценки по пятибалльной шкале и рейтинговые оценки в баллах.

При получении студентом на экзамене неудовлетворительной оценки в ведомость выставляется рейтинговая оценка в баллах (<40 баллов), соответствующая фактическим знаниям (ответу) студента.

Критерии оценки знаний студентов в рамках каждой учебной дисциплины или групп дисциплин вырабатываются преподавателями согласованно на кафедрах Университета исходя из требований образовательных стандартов.

Шкала оценивания зачета

Баллы	Критерии оценивания	
20	Обучающийся полно излагает материал, дает правильное определение основных понятий; обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только из учебника, но и самостоятельно составленные.	
14	Систематическое посещение занятий, участие в практических занятиях, единичные пропуски по уважительной причине и их отработка, изложение материала носит преимущественно описательный характер, студент показал достаточно уверенное владение материалом, однако недостаточное умение четко, аргументировано и корректно отвечать на поставленные вопросы и отстаивать собственную точку зрения.	
7	Обучающийся обнаруживает знание и понимание основных положений данной темы, но: - излагает материал неполно и допускает неточности в определении понятий или формулировке правил; - не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры.	

I	3	Обучающийся обнаруживает незнание большей части
		соответствующего вопроса, допускает ошибки в формулировке
		определений и правил, искажающие их смысл, беспорядочно и
		неуверенно излагает материал.

Итоговая шкала выставления оценки по дисциплине

Итоговая оценка по дисциплине выставляется по приведенной ниже шкале. При выставлении итоговой оценки преподавателем учитывается работа обучающегося в течение всего срока освоения дисциплины, а также баллы на промежуточной аттестации.

Баллы, полученные обучающимися в течение освоения дисциплины	Оценка по дисциплине
41-100	«зачтено»
0-40	«не зачтено»

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- 1. Епифанов, Г.И. Физика твердого тела: учеб.пособие / Г. И. Епифанов. 4-е изд., стереотип. СПб. : Лань, 2019. 288с. Текст: непосредственный. Епифанов, Г. И. Физика твердого тела : учебное пособие / Г. И. Епифанов. 4-е изд., стер. —
- Санкт-Петербург: Лань, 2022. 288 с. ISBN 978-5-8114-1001-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/210671 (дата обращения: 23.06.2023). Режим доступа: для авториз. пользователей.
 - 2. Савельев, И. В. Курс общей физики. В 3-х тт. Том 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц / И. В. Савельев. 14-е изд., стер. Санкт-Петербург: Лань, 2023. 320 с. ISBN 978-5-507-47045-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/322505 (дата обращения: 23.06.2023). Режим доступа: для авториз. пользователей.

Савельев И.В. Курс общей физики. т.3. квантовая оптика; атомная физика; физика твердого тела; физика атомного ядра и элементарных частиц / И. В. Савельев. - 8-е изд. - СПб. : Лань, 2007. - 320с. – Текст: непосредственный.

6.2. Дополнительная литература

- 3. Савельев, И. В. Курс общей физики: учебное пособие: в 5 томах / И. В. Савельев. 5-е изд. Санкт-Петербург: Лань, 2022 Том 5: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц 2022. 384 с. ISBN 978-5-8114-1211-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/210611 (дата обращения: 23.06.2023). Режим доступа: для авториз. пользователей.
- 4. Стрекалов, Ю.А. Физика твердого тела: учеб.пособие для вузов / Ю. А. Стрекалов, Н. А. Тенякова. М.: Инфра-М, 2013. 307с. Текст: непосредственный.
 - 5. Стрекалов, Ю. А. Физика твердого тела: Учебное пособие / Ю.А. Стрекалов, Н.А. Тенякова. М.: ИЦ РИОР: НИЦ Инфра-М, 2018. 307 с.: (Высшее образование: Бакалавриат). ISBN 978-5-369-00967-3. Текст : электронный. URL: https://znanium.com/catalog/product/959952 (дата обращения: 23.06.2023). Режим доступа: по подписке.
 - 6. Абрамчук, Н. С. Нанотехнологии. Азбука для всех / Под ред. Ю. Д. Третьякова. 2-е изд., испр. и доп. Москва: ФИЗМАТЛИТ, 2009. 368 с. ISBN 978-5-9221-1048-8. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785922110488.html (дата обращения: 23.06.2023). Режим доступа: по подписке.
 - 7. .Де Жен П. Физика жидких кристаллов. М. Мир. 1977.

- 8. Чандрасекар С. Жидкие кристаллы. М. Мир. 1980. С.344
- 9. Пикин С.А., Блинов Л.М. Жидкие кристаллы. М., Наука, 1982. С.208.
- 10. Сонин А.С. Введение в физику жидких кристаллов. М.: Наука, 1983. С.320.
- 11. Хабибуллаев П.К., Геворкян Э.В., Лагунов А.С. Реология жидких кристаллов. Т.ФАН. 1992. С. 300.
- 12. Беляев В.В. Вязкость нематических жидких кристаллов / В. В. Беляев. М. : Физматлит, 2002. 224с. Текст: непосредственный.
- 13. **Беляев, В.В.** Жидкие кристаллы в начале XXI века: моногр. / В. В. Беляев, Г. С. Чилая. М.: МГОУ, 2015. 136с. Текст: непосредственный.
- 14. Анисимов М.А. Критические явления в жидкостях и жидких кристаллах. М., Наука, 1987. С.272.
- 15. Ландау Л.Д., Лифшиц. Е.М. Механика жидких кристаллов // Теория упругости. М.: Наука, 2003. С. 264.
- 16. Базаров И.П., Геворкян Э.В., Николаев П.Н. Задачи по термодинамике и статистической физике. М. «Высшая школа», 1997. С.352.
 - 17. Переломова Н.В., Тагиева М.М. Задачник по кристаллофизике. М., Наука, 1982.
- 18. Сонин А. С. Жидкие кристаллы. Первые сто лет. Книга 1. От открытия до Второй мировой войны. 2015.

6.3. Ресурсы информационно-телекоммуникационной сети "Интернет"

- 1. http://mgou.ru/index.php?option=com_content&task=view&id=48&Itemid=614
- 2. Научная электронная библиотека http://elibrary.ru

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1. Методические рекомендации по подготовке к практическим занятиям.
- 2. Методические рекомендации по организации самостоятельной работы по дисциплинам.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows

Microsoft Office

Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ

Система «КонсультантПлюс»

Профессиональные базы данных

fgosvo.ru — Портал Федеральных государственных образовательных стандартов высшего образования pravo.gov.ru - Официальный интернет-портал правовой информации www.edu.ru — Федеральный портал Российское образование

Свободно распространяемое программное обеспечение, в том числе отечественного производства ОМС Плеер (для воспроизведения Электронных Учебных Модулей) 7-zip

Google Chrome

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения учебных занятий, оснащенные оборудованием и техническими средствами обучения: учебной мебелью, доской, демонстрационным оборудованием, персональными компьютерами, проектором;
- помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключением к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде.