Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 24.10.2024 14:21:41 Уникальный программный ключ: МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ 6b5279da4e034bff67917 2003 дарратвенное образовательное учреждение высшего образования Московской области

Е. Суслин /

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ (МГОУ)

Биолого-химический факультет

Кафедра теоретической и прикладной химии

Согласовано управлением организации и

контроля качества образовательной

деятельности

«22» июня 2021 г.

Начальник управления

Одобрено учебно-методическим советом

Протокол «22» июня 2021 г. № 5

Председатель

О.А. Шестакова /

Рабочая программа дисциплины

Биологическая химия

Направление подготовки

06.03.01 Биология

Профиль:

Биомедицинские технологии

Квалификация

Бакалавр

Форма обучения

Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой теоретической и

биолого-химического факультета

Протокол от «17» июня 2021 г. № 7

Председатель УМКом

/И.Ю. Лялина /

прикладной химии

Протокол от «10» июня 2021 г. № 11

Зав. кафедрой

/Н.В. Васильев /

Мытищи 2021

Автор-составитель:

Дроганова Татьяна Сергеевна, старший преподаватель кафедры теоретической и прикладной химии;

Поликарпова Людмила Викторовна, ассистент кафедры теоретической и прикладной химии,

Тишина Екатерина Александровна, ассистент кафедры теоретической и прикладной химии

Рабочая программа дисциплины «Биологическая химия» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 06.03.01 Биология, утвержденного приказом МИНОБРНАУКИ РОССИИ № 934 от 11.08.2020

Дисциплина входит в обязательную часть блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Содержание

1.ПЛ	АНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ	5
	ЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	
3. OE	БЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	5
4. YY	ІЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ.	6
	ОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ ЕСТАЦИИ ПО ДИСЦИПЛИНЕ	. 20
6.	УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	.30
7.	МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	.32
	ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ЦЕССА ПО ДИСЦИПЛИНЕ	. 32
9.	МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	.32

1.ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель дисциплины

Формирование у обучающихся фундаментальных знаний в области биологической химии как базовой составляющей современной физико-химической биологии.

Задачи дисциплины:

- ознакомить с научно-практическими задачами биологической химии, ее ролью в системе биологических и химических наук и различных отраслях практической деятельности человека;
- сообщать знаний в области обмена веществ и энергии в организме, особенностей распада и синтеза основных классов органических соединений (белков, нуклеиновых кислот, углеводов, липидов), представленных в живой природе;
- сформировать знаний в области взаимосвязи обменов веществ в организме и уровнях регуляции обмена веществ, роли биологически активных соединений (гормонов, антибиотиков и др.) и макроэргических соединений в этих процессах.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ОПК 2 Способен применять принципы структурно-функциональной организации, использовать физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания;

ДПК 2 Способен к участию в мероприятиях по мониторингу потенциально опасных биообъектов с помощью молекулярно-биологических и биотехнологических методов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в обязательную часть блока 1 «Дисциплины (модули)» и является обязательной для изучения.

Дисциплина опирается на знания, полученные в результате освоения таких дисциплин как «Техника химического эксперимента», «Основы современной биологии», «Органическая химия», «Биофизика», «Химия», «Биология размножения и развития», «Геохимия и геофизика биосферы», «Бионеорганическая химия».

Освоение курса «Биологическая химия» необходимо для изучения дисциплин «Молекулярная биология», «Вирусология и иммунология», «Основы онкогенетики», «Основы мутагенеза и генотоксикологии», «Биотехнология», «Методы молекулярной диагностики заболеваний», «Технология лекарственного сырья», «Биохимическая оценка опасности продуктов питания», «Химия физиологически-активных веществ», а также для написания исследовательских работ, выпускной квалификационной работы и успешной последующей профессиональной деятельности.

Овладение материалом курса «Биологическая химия» может способствовать успешной работе в области прикладной экологии, биотехнологии, молекулярной биологии.

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	6
Объем дисциплины в часах	216
Контактная работа:	88,6
Лекции	28
Лабораторные занятия	56
Контактные часы на промежуточную аттестацию:	4,6
Экзамен	0,6
Предэкзаменационная консультация	4
Самостоятельная работа	108
Контроль	19,4

Форма промежуточной аттестации – экзамен в 5 и 6 семестре на 3 курсе.

3.2. Содержание дисциплины

Наименование разделов (тем)	Виды занятий	
Дисциплины с кратким содержанием	Лекции	Лабораторны е занятия
Раздел 1. Введение в биологическую химию.	1	1
Раздел 2. Химический состав организмов. Характеристика основных классов органических соединений, представленных в живых организмах	-	1
Раздел 3. Структура и функции белков.	3	6
Раздел 4. Ферменты.	4	6
Раздел 5. Витамины и другие биологически активные соединения.	-	2
Раздел 6. Нуклеиновые кислоты.	3	5
Раздел 7. Обмен нуклеиновых кислот.	4	7
Раздел 8. Обмен белков.	4	6
Раздел 9. Строение и функции углеводов.	-	2
Раздел 10. Обмен углеводов.	3	6
Раздел 11. Структура и функции липидов.	-	2
Раздел 12. Обмен липидов.	3	6
Раздел 13. Гормоны.	-	2
Раздел 14. Биологическое окисление.	2	2
Раздел 15. Взаимосвязь и регуляция обмена веществ.	1	2
Итого	28	56

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ CAMOCTOЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для	Изучаемые вопросы	Количе	Формы	Методиче	Формы
самостоятельн		ство	самостоя	ские	отчетнос
ого изучения		часов	тельной	обеспечен	ТИ

			работы	ия	
Раздел 1.	Предмет биологической				
Введение в биологическую химию.	химии. Краткая история возникновения и развития биологической химии. Ее роль в становлении молекулярной биологии, генной инженерии и биотехнологии. Вклад отечественных ученых в развитие этой науки (работы А.Я.Данилевского, А.Н.Баха, Н.И.Лунина, И.П.Павлова, А.И.Опарина, В.А.Энгельгардта, А.Н.Белозерского, А.А.Баева, А.С.Спирина, Ю.А.Овчинникова и др.) Взаимосвязь биологической химии с биофизикой, биоорганической химией и молекулярной биологией. Современные разделы биологической химии. Задачи статической, динамической, функциональной, медицинской, космической, технической и эволюционной биохимии.	3	Работа с литературо й и Интернет ресурсами	Рекомендуем ая литература, Интернет- ресурсы	Доклад, презентаци я
Раздел 2. Химический состав организмов. Характеристик а основных классов органических соединений, представленны х в живых организмах	Постоянно и иногда встречающиеся в живых организмах элементы. Понятие о главных биогенных элементах, их роли в построении и функционировании биологических структур. Закономерности распространения элементов в живой природе. Биогеохимический круговорот веществ в природе — основа сохранения биосферы. Содержание нуклеиновых кислот, белков, углеводов, липидов, минеральных веществ и других соединений в организме человека, животных и растений. Роль воды в процессах жизнедеятельности. Пестициды и их виды.	3	Работа с литературо й и Интернет ресурсами	Рекомендуем ая литература, Интернет- ресурсы	Доклад, презентаци я
Раздел 3. Структура и функции белков.	Аминокислотный состав белков и методы его определения. Особенности строения белковых (протеиногенных) аминокислот. Химическая классификация белковых	9	Работа с литературо й и Интернет ресурсами	Рекомендуем ая литература, Интернет- ресурсы	Выполнени е домашних заданий

аминокислот. Тонкое		
строение пептидной связи.		
Пептиды. Природные		
пептиды (глутатион,		
вазопрессин, энкефалины и		
др.) и их физиологическое		
значение. Пути		
возникновения природных		
пептидов. Ограниченный		
протеолиз белков. Синтез		
пептидов заданного строения		
и возможности их		
применения.		
Структура белковой		
молекулы. Доказательства полипептидной теории		
строения белков.		
Первичная структура белков,		
методы ее определения.		
Фенилтиогидантоиновый		
метод (метод Эдмана).		
Динитрофторбензольный		
метод (метод Сенджера).		
Автоматическое		
секвенирование белков.		
Молекулярно-генетические		
методы определения		
структуры белков.		
Компьютерные банки данных		
о первичной структуре		
белков. Эволюция первичной		
структуры белков. Оценка		
функциональных		
возможностей белков по		
особенностям их первичной		
структуры		
(металлотионеины,		
гемоглобины и др.)		
Вторичная структура белков. Понятие об α- и β-		
конформациях		
полипептидной цепи. Работы		
Л. Полинга и Р.Кори.		
Параметры α-спирали		
полипептидной цепи. Другие		
типы спиралей: 3_{10} , π . β -		
структуры (складчатые		
листы) в белках.		
Классификация белков по		
представительству у них		
вторичных структур. Связь		
между первичной и		
вторичной структурой		
белков. Прионизация белков		
и изменение вторичной		
структуры белков-прионов.		
Надвторичные структуры в		
белках и их связь с		
функциями белков.		
«Цинковые пальцы» и		
«лейциновые молнии».		
Доменная организация		
белков. Понятие о		

	Т	1	T	Т	
	структурных и				
	функциональных доменах на				
	примере иммуноглобулинов.				
	Кофермент-связывающие				
	домены у ферментов.				
	Полифункциональность				
	белков, основанная на				
	*				
	наличии у них различных				
	функциональных доменов.				
	Третичная структура белков,				
	методы ее определения. Типы				
	связей, обеспечивающих				
	поддержание				
	пространственной структуры				
	белков. Динамичность				
	третичной структуры.				
	Самоорганизация третичной				
	структуры и роль				
	1				
	специфических белков-				
	шаперонов в фолдинге				
	белков.				
	Четвертичная структура				
	белков. Субъединицы				
	(протомеры) и эпимолекулы				
	(мультимеры). Типы связей				
	субъединиц в эпимолекуле.				
	Конкретные примеры				
	четвертичной структуры				
	белков (гемоглобин,				
	лактатдегидрогеназа и др.).				
	Структурная классификация				
	белков: фибриллярные и				
	глобулярные белки, белки				
	типов: α , β , $\alpha+\beta$ и α/β .				
	Простые и сложные белки:				
	нуклеопротеины,				
	гликопротеины,				
	липопротеины,				
	металлопротеины.				
	Функциональная				
	классификация белков и				
	характеристика отдельных				
	групп: структурных,				
	сократительных,				
	транспортных защитных,				
	рецепторных и регуляторных				
	белков. Участи белков в				
	процессе детоксикации				
	ксенобиотиков (цитохром Р ₄₅₀				
	металлотионеины и др.)				
Deares 4	Каталитическая функция				
Раздел 4.					
Ферменты.	белков. Роль отечественных				
	ученых (И.П.Павлова,				
	А.Е.Браунштейна,		D 5	D	
	Б.И.Курганова и др.) в		Работа с	Рекомендуем	Выполнени
	развитии энзимологии.		литературо	ая	е
	РНК-ферменты (рибозимы) и	10	йи	литература,	домашних
	их роль в биокатализе.		Интернет	Интернет-	
	Понятие о каталитически		ресурсами	ресурсы	заданий
	активных антителах				
	(абзимах) и гибридозимах.				
	Отличие ферментов от				
		1	1	1	
	катализаторов				

	T				
	небиологической природы.				
	Зависимость активности				
	ферментов от величины рН,				
	температуры и других				
	факторов среды.				
	Специфичность действия				
	ферментов. Скорость				
	ферментативных реакций.				
	Единицы активности				
	ферментов.				
	Основы ферментативной				
	кинетики. Уравнение				
	Михаэлиса-Ментен. Кривая				
	Лайнуивера-Берка. Константа				
	Михаэлиса как важнейший				
	параметр характеристики				
	фермента, методы ее				
	определения.				
	Понятие о субстратном,				
	каталитическом и				
	аллостерическом центре				
	ферментов. Гипотезы				
	Э.Фишера, Д.Кошланда и				
	современные теории				
	взаимодействия ферментов и				
	субстратов. Кофакторы				
	ферментов: коферменты и				
	простетические группы.				
	Механизмы действия				
	ферментов. Ферменты -				
	мономеры (трипсин,				
	лизоцим) и мультимеры				
	(протеинкиназы).				
	Активаторы и ингибиторы				
	ферментов.				
	Множественные формы				
	ферментов. Генетические и				
	эпигенетические причины				
	возникновения				
	множественных форм				
	ферментов. Значение				
	исследований изоформ				
	ферментов для медицины,				
	генетики, селекции и				
	мониторинга окружающей				
	среды.				
	Промышленное получение и				
	использование ферментов.				
	Иммобилизованные				
	ферменты. Применение				
	ферментов в генетической				
	инженерии и биотехнологии.				
	Использование ферментов в				
	диагностике заболеваний.				
	Номенклатура ферментов.				
	Систематические и рабочие				
	(рекомендуемые) названия				
	ферментов. Шифры				
	ферментов.				
	Классификация ферментов.				
	Характеристика отдельных				
	классов ферментов.				
Dan-a	1 1	1	Dofore a	Damastarr	Dodons-
Раздел 5.	История открытия	4	Работа с	Рекомендуем	Реферат,

	D	I	1	1	I
Витамины и	витаминов. Роль витаминов в		литературо	ая	презентаци
другие	жизнедеятельности человека		йи	литература,	Я,
биологически	и животных. Авитаминозы,		Интернет	Интернет-	выполнени
активные	гиповитаминозы,		ресурсами	ресурсы	e
	гипервитаминозы. Источники				домашних
соединения.	витаминов. Взаимосвязь				заданий
	витаминов и коферментов.				
	Жирорастворимые витамины.				
	Витамин А и его роль в				
	организме. Витамины D_1 , D_2				
	и D ₃ в фосфорно-кальциевом				
	обмене. Витамины К и Е и их				
	физиологическое значение.				
	Водорастворимые витамины.				
	Витамины В ₁ , В ₂ , В ₃ , В ₅ и В ₆				
	и их значение в				
	биохимических процессах в				
	организме. Витамин С				
	(аскорбиновая кислота),				
	строение и роль в обмене				
	веществ. Витамин Р (рутин).				
	Взаимообусловленность				
	действия витаминов Р и С.				
	Антивитамины, антибиотики,				
	ростовые вещества,				
	фитонциды (важнейшие				
	представители и механизмы				
D (их действия).				
Раздел 6.	Содержание ДНК и ее				
Нуклеиновые	локализация в клетке.				
кислоты.	Размеры и формы молекул				
	ДНК. Кольцевые молекулы				
	ДНК бактерий, некоторых				
	вирусов и фагов,				
	митохондрий, хлоропластов и				
	плазмид. Нуклеотидный				
	состав ДНК. Первичная				
	структура ДНК и методы ее				
	определения. Работы Ф.Сангера и К.Вентера.				
	Понятие о генах и геномах.				
	Вторичная структура ДНК				
	(модель Дж. Уотсона и				
	Ф.Крика) и ее значение для		Работа с	Рекомендуем	
	развития молекулярной			ая	Выполнени
	генетики. Принцип	8	литературо й и		e
	комплементарности и его	0	и и Интернет	литература, Интернет-	домашних
	реализация при		ресурсами	ресурсы	заданий
	воспроизведении		ресурсами	ресурсы	
	(репликации) структуры				
	геномов и реализации				
	генетической информации в				
	клетке. Полиморфизм				
	вторичной структуры ДНК				
	(A-, B-, С-, D- и Z-формы				
	ДНК). Третичная структура и				
	сверхспирализация ДНК.				
	Строение хроматина.				
	Гистоны и негистоновые				
	белки хроматина. Строение				
	нуклеосомы. Уровни				
	конденсации хроматина.				
	Эухроматин и				
	улроматин и	l	1	l	l

	T			ı	T
	гетерохроматин.]
	Повреждения структуры ДНК				
	и факторы их вызывающие.				
	Содержание и локализация				ļ
	РНК в клетке. Молекулярная				
	масса РНК, коэффициенты				
	седиментации РНК.				
	Виды РНК: тРНК, рРНК,				
	мРНК, мяРНК, миРНК,				
	тмРНК, рибопереключатели, вирусные РНК и их функции.				
	Разнообразие строения и				
	функций РНК. Концепция				
	«Мир РНК».				
	Структура и функции тРНК.				
	Первичная, вторичная и				
	третичная структура тРНК.				
	Изоакцепторные тРНК.				
	Структура и функции рРНК.				
	Различия в наборах рРНК у				
	бактерий и эукариот.				
	Канонические и				
	неканонические функции				
	рРНК.				
	Структура мРНК у прокариот				
	и эукариот.				
	Полицистроновые и				
	моноцистроновые мРНК.				
	Мозаичное строение генов				
	эукариот и функциональные				
	участки процессированных				
	(зрелых) молекул их мРНК.				
Раздел 7.	Ферменты распада				
Обмен	нуклеиновых кислот				
нуклеиновых	(нуклеазы). Специфичность и				
кислот.	характер действия нуклеаз.				
MIIO.	ДНКазы и РНКазы.				
	Фосфодиэстеразы.				
	Полинуклеотидфосфорилаза и значение этого фермента				
	для расшифровки				
	генетического кода.				
	Пути распада нуклеиновых				
	кислот до нуклеотидов.				
	Распад нуклеотидов. Распад				
	пуриновых и пиримидиновых		Работа с	Рекомендуем	Доклад,
	оснований. Конечные		литературо	ая	выполнени
	продукты распада азотистых	10	йи	литература,	e
	оснований у различных групп		Интернет	Интернет-	домашних
	организмов.		ресурсами	ресурсы	заданий
	Репликация ДНК как				
	необходимое условие				
	передачи генетической				
	информации. Биосинтез				
	азотистых оснований и				
	нуклеотидов.				
	Принцип комплементарности				
	и матричный принцип				
	биосинтеза ДНК.				
	Полуконсервативный принцип репликации ДНК.				
	Механизм репликации ДНК.				
	Ферменты (ДНК-полимеразы,				
1	т мерменты (дпк-полимеразы,	Ī	I	ĺ	I

	T	T	ī	1	ī
	праймаза, ДНК-лигаза) и				
	белковые факторы (ДНК-				
	расплетающие, ДНК-				
	раскрущивающие, ДНК-				
	связывающие белки и др.)				
	репликации. Репликосома и				
	праймосома. Репликация				
	кольцевых молекул ДНК.				
	Репликационная вилка.				
	Фрагменты Оказаки. Этапы				
	репликации ДНК.				
	Синтез ДНК на матрице РНК				
	(обратная транскрипция).				
	РНК-зависимая ДНК-				
	полимераза (ревертаза).				
	Теломерные повторы в ДНК				
	и их функции. ДНК-				
	теломераза: строение и				
	механизм действия.				
	Локализация биосинтеза РНК				
	в клетке. Строение и свойства				
	РНК-полимераз. Этапы и				
	белковые факторы				
	транскрипции. Понятие о				
	транскриптоне. Регуляция				
	транскрипции на оперонах				
	бактерий.				
	Процессинг первичных				
	транскриптов. Кэпирование и				
	полиаденилирование мРНК у				
	эукариот. Сплайсинг мРНК.				
	Роль ферментов и малых				
	ядерных РНК в сплайсинге.				
	Аутосплайсинг. Понятие об				
	альтернативном сплайсинге.				
	Редактирование РНК.				
Раздел 8.	Значение распада белков.				
Обмен белков.	Белки в питании человека.				
	Объем и скорость обновления				
	белков различных тканей и				
	органов. Пути распада				
	белков. Ферментативный				
	гидролиз белков. АТФ-				
	зависимый протеолиз белков.				
	Роль убиквитина и протеосом				
	в распаде белков.				
	Метаболизм аминокислот.				
	Обмен аминокислот как		Работа с	Рекомендуем	Drugania
	источник возникновения		литературо	ая	Выполнени
	биологически активных	10	йи	литература,	e
	соединений (биогенных		Интернет	Интернет-	домашних
	аминов, ростовых веществ,		ресурсами	ресурсы	заданий
	гормонов и т.д.). Пути		• • • • • • • • • • • • • • • • • • •		
	связывания аммиака в				
	организме. Орнитиновый				
	цикл (цикл мочевины).				
	Патологии аминокислотного				
	обмена.				
	Пути новообразования				
	аминокислот в природе и их				
	соотношение у различных				
	организмов. Первичные и				
	вторичные аминокислоты.				
	вторизные аминокислоты.			l	

	1 _	Г		1	
	Заменимые, полузаменимые и				
	незаменимые аминокислоты.				
	Пути и механизмы				
	биосинтеза белков в природе.				
	Матричный и нематричный				
	(мультиэнзимный) биосинтез				
	белков, их соотношение в				
	природе.				
	Матричная теория				
	биосинтеза белков. Общая				
	схема матричного механизма				
	биосинтеза белка.				
	Механизм активирования				
	аминокислот. Аминоацил-				
	тРНК как субстраты для				
	биосинтеза белков.				
	Характеристика аминоацил-				
	тРНК-синтетаз:				
	специфичность, регуляция				
	активности.				
	Современные представления				
	о структуре рибосом.				
	Характеристика РНК и				
	белков, входящих в состав				
	субчастиц рибосом				
	прокариот и эукариот.				
	Работы А.С.Спирина в				
	области изучения структуры				
	рибосом.				
	Этапы трансляции:				
	инициация, элонгация,				
	терминация. Белковые				
	факторы трансляции.				
	Код белкового синтеза,				
	история его изучения и				
	современные представления о				
	нем. Особенности				
	генетического кода				
	митохондрий.				
	Перепрограммирование				
	трансляции.				
	Посттрансляционные				
	модификации белков. РНК-				
	интерференция как механизм				
	регуляции биосинтеза белков.				
Раздел 9.	Классификация углеводов.				
Строение и	Альдозы и кетозы.				
функции	Оптическая изомерия				
углеводов.	углеводов. Кольчато-цепная				
утловодов.	таутомерия. Конформации				
	углеводов.				Доклад,
	Простые углеводы		Работа с	Рекомендуем	презентаци
	(моносахариды) и их		литературо	ая	я,
	важнейшие представители:	4	йи	литература,	выполнени
	глюкоза, фруктоза, рибоза,	-	Интернет	Интернет-	e
	галактоза. Гликозиды их		ресурсами	ресурсы	домашних
	строение и функции.		1 71 .		заданий
	Сложные углеводы.				
	Дисахариды и их важнейшие				
	представители (сахароза,				
	мальтоза, лактоза).				
	Полисахариды (гликоген,				
	крахмал, хитин, клетчатка).				

	T	ı	ı	I	1
	Типы гликозидных связей в				
	молекулах полисахаридов.				
	Разветвленные и				
	неразветвленные полисахариды. Строение и				
	свойства амилозы,				
	амилопектина, гликогена и				
	декстранов.				
	Канонические и				
	неканонические функции				
	углеводов. Энергетическая,				
	метаболическая и				
	структурная функции				
	углеводов. Рецепторная				
	функция. Углеводные				
	компоненты гликопротеинов				
	групп крови.				
Раздел 10.	Пути распада полисахаридов				
Обмен	и олигосахаридов. Ферменты				
углеводов.	гидролиза полисахаридов и				
уттоводов.	олигосахаридов: амилазы,				
	гликозидазы, хитиназа и др.				
	Фосфоролиз сложных				
	углеводов. Гликогенфосфорилаза и				
	механизм регуляции ее				
	активности. Гормональная				
	регуляция активности				
	фосфорилаз.				
	Распад моносахаридов. Пути				
	обмена глюкозо-6-фосфата.				
	Дихотомический путь				
	распада и его энергетическое				
	значение. Апотомический				
	путь распада				
	(пентозофосфатный путь) и				
	его метаболическое значение.				
	Гликолиз и спиртовое		Работа с	Рекомендуем	
	брожение.		литературо	ая	Выполнени
	Окислительное	10	йи	литература,	e
	декарбоксилирование		Интернет	Интернет-	домашних
	пировиноградной кислоты при участии		ресурсами	ресурсы	заданий
	при участии полиферментного комплекса.				
	Цикл дикарбоновых и				
	трикарбоновых кислот.				
	Энергетическое и				
	метаболическое значение				
	данного цикла.				
	Понятие о первичном				
	биосинтезе углеводов в				
	процессе фотосинтеза и				
	хемосинтеза. Структура и				
	механизм действия				
	рибулозодифосфаткарбоксил				
	азы. Превращение 3-				
	фосфоглицериновой кислоты				
	во фруктозо-6-фосфат. Биосинтез моносахаридов				
	(глюкозы) у животных как				
	обращение дихотомического				
	пути распада. Роль				
	изоферментов				
	поферментов	<u> </u>	<u> </u>	<u> </u>	i

	T	ı	I		1
Раздел 11. Структура и функции липидов.	малатдегидрогеназы в этом процессе. Трансгликозилирование и его роль в биосинтезе олиго- и полисахаридов. Значение УДФ-глюкозы в этом процессе. Синтез разветвленных молекул полисахаридов. Регуляция метаболизма углеводов в клетке. Общая характеристика и классификация липидов. Простые липиды (жиры, воски, стериды). Строение и функции жиров. Жирные кислоты, входящие в их состав. Ненасыщенные и насыщенные высшие жирные кислоты. Твердые				
	(животные) жиры и жидкие жиры (масла). Гидрогенизация жиров и возникновение трансизомеров ненасыщенных высших жирных кислот. Энергетическая и метаболическая функции жиров. Строение и функции восков. Воски животного и растительного происхождения и их биологические функции. Стериды, их строение и биохимические функции. Стериды как сложные эфиры холестерола и жирных кислот. Участие стеридов в построении биологических мембран. Стериды как источники возникновения стероидов и стероидных гормонов. Сложные липиды: гликолипиды и фосфолипиды. Строение и функции гликолипидов. Строение цереброна. Гликосфинголипиды. Фосфолипиды их строение и свойства. Роль фосфолипидов в построении биологических мембран. Особенности строения лецитина.	4	Работа с литературо й и Интернет ресурсами	Рекомендуем ая литература, Интернет- ресурсы	Доклад, презентаци я, выполнени е домашних заданий
	вторичных посредников гормонов. Включение липидов в состав липопротеинов. Исследования состава липопротеинов в				

	медицинской диагностике.				
Раздел 12. Обмен липидов.	медицинской диагностике. Распад триглицеридов, его энергетическое и метаболическое значение Липазы и регуляция их активности. Обмен глицерина. Окисление высших жирных кислот. Пути распада фосфолипидов. Распад фосфоинозитидов. Обмен стеридов. Реакции окисления и восстановления стеролов. Образование стероидов (холевые кислоты, стероидные гормоны). Биосинтез высших жирных кислот. Структура и механизм действия ацетилкоА-карбоксилазы. Синтез высших жирных кислот. Структура синтаз высших жирных кислот. Структура синтаз высших жирных кислот у различных групп организмов. Строение и механизм действия синтазы жирных кислот млекопитающих. Локализация синтеза высших жирных кислот в клетке. Образование ненасыщенных жирных кислот, десатуразный комплекс ферментов. Синтез триглицеридов. Синтез фосфатидов, роль	10	Работа с литературо й и Интернет ресурсами	Рекомендуем ая литература, Интернет- ресурсы	Выполнени е домашних заданий
Раздел 13. Гормоны.	цитидиндифосфатхолина в этом процессе. История развития учения о гормонах. Номенклатура и классификация гормонов. Строение и свойства стероидных гормонов. Строение и физиологобиохимическое значение кортикостерона, кортизола, альдостерона, эстрадиола. Механизм действия стероидных гормонов в регуляции транскрипции. Рецепторы стероидных гормонов. Синтетические анаболические стероиды, медицинские показанию к использованию стероидов. Характеристика важнейших представителей пептидных гормонов (инсулин, глюкагон, тиреотропин, вазопрессин, гормон роста, адренокортикотропный гормон). Механизм действия	6	Работа с литературо й и Интернет ресурсами	Рекомендуем ая литература, Интернет- ресурсы	Реферат, презентаци я, выполнени е домашних заданий

	пептидных гормонов (на				
	примере глюкагона). Роль G-				
	белков и протеинкиназ в				
	реализации гормонального				
	сигнала в клетке.				
	Современные представления				
	о структуре рецептора и				
	механизме действия				
	инсулина.				
	Гормоны – производные				
	аминокислот. Структура и				
	функции адреналина,				
	норадреналина и дофамина. Нейромедиаторная и				
	нейромодуляторная функция				
	биогенных аминов.				
	Тироидные гормоны и				
	механизм их действия.				
	Гормоны – производные				
	триптофана. Серотонин и				
	мелатонин, их структура и				
	функции.				
	Тромбоксин и лейкотриены.				
	Простагландины.				
	Фитогормоны.				
Раздел 14.	История развития				
Биологическое	представлений о				
окисление.	биологическом окислении.				
	Работы А.Лавуазье,				
	В.И.Палладина, Х.Виланда,				
	Д.Кейлина, О.Варбурга,				
	А.Н.Баха, В.А.Энгельгардта. Свободное окисление.				
	Ферменты свободного				
	окисления и внутриклеточная				
	локализация свободного				
	окисления. Оксигеназы и				
	гидроксилазы, их важнейшие				
	функции. Микросомальное				
	окисление и роль цитохрома				
	Р ₄₅₀ в этом процессе.				
	Активные формы кислорода		Работа с	Рекомендуем	
	и ферменты,		литературо	ая	Выполнени
	контролирующие их	9	йи	литература,	e
	концентрацию в клетке.		Интернет	Интеритура,	домашних
	Значение свободного		ресурсами	ресурсы	заданий
	окисления в детоксикации				
	ксенобиотиков. Сопряжение процессов				
	окисления с				
	фосфорилированием на				
	уровне субстратов				
	(субстратное				
	фосфорилирование) в				
	процессах гликолиза и				
	брожения.				
	Сопряжение окисления с				
	фосфорилированием на				
	уровне				
	электронтранспортной цепи в				
	митохондриях. Дыхательная				
	цепь ферментов				
	митохондрий. Блочная				

	1	ı	1	Т	1
	структура дыхательной цепи				
	ферментов. Понятие о				
	сопрягающей мембране				
	митохондрий. Значение				
	электрохимического				
	протонного градиента.				
	Работы Ф.Липмана, П.Боера,				
	П.Митчелла, В.П.Скулаччева.				
	Гипотезы о механизме биосинтеза АТФ.				
	Конформационная гипотеза П.Боера. Строение протонной				
	АТФазы и вероятные				
	механизмы ее				
	функционирования.				
Раздел 15.	Общие понятия о				
	взаимосвязи обменов				
Взаимосвязь и	основных классов				
регуляция	органических соединений в				
обмена	организме. Понятие о				
веществ.	ключевых метаболитах.				
	Взаимосвязь обмена				
	нуклеиновых кислот и				
	белков. Кодирующая				
	функция нуклеиновых				
	кислот. Белковые факторы				
	репликации, транскрипции и				
	трансляции. Значение				
	аминокислот для синтеза				
	азотистых оснований.				
	Взаимосвязь обмена				
	углеводов и липидов, роль				
	ацетил-КоА в этом процессе.				
	Взаимосвязь обменов белков				
	и углеводов.				
	Взаимопревращения		D 6		
	аминокислот и кетокислот.		Работа с	Рекомендуем	Доклад,
	Уровни регуляции обмена		литературо	ая	выполнени
	веществ: оперонный, клеточный, метаболитный,	8	й и Интернет	литература,	e
	организменный,		_	Интернет-	домашних
	популяционный.		ресурсами	ресурсы	заданий
	Оперонный				
	(транскрипционный) уровень				
	регуляции как важнейший				
	этап регуляции обмена				
	веществ в клетке.				
	Метаболитный уровень				
	регуляции. Регуляция				
	активности ферментов. Роль				
	протеинкиназ и вторичных				
	посредников гормонов в				
	регуляции активности				
	ферментов. Значение				
	множественных форм				
	ферментов в регуляции				
	метаболизма.				
	Ретроингибирование				
	ферментов и его роль в				
	регуляции обмена веществ.				
	Клеточный уровень				
	регуляции. Проницаемость				
	клеточных и				

T R R C C I F R M G G a	внутриклеточных мембран. Гранспорт метаболитов в клетке. Ядерно- цитоплазматические взаимоотношения. Организменный уровень регуляции. Гормональная регуляция синтеза различных соединений в организме. Популяционный уровень регуляции. Антибиотики микроорганизмов, фитонциды растений, аттрактанты и репелленты.			
a G E	аттрактанты и репелленты. Эколого-биохимические ззаимодействия с участием			
Г	различных групп организмов: грибов, водорослей, высших растений, животных.			
		108		

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования
ОПК 2 Способен применять принципы структурно-функциональной организации, использовать физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания	1.Работа на учебных занятиях (лекции, лабораторные занятия) 2.Самостоятельная работа (домашние задания, написание рефератов, докладов и др.)
ДПК 2 Способен к участию в мероприятиях по мониторингу потенциально опасных биообъектов с помощью молекулярно-биологических и биотехнологических методов.	1. Работа на учебных занятиях (лекции, лабораторные занятия) 2. Самостоятельная работа (домашние задания, написание рефератов, докладов и др.)

5.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Оцени ваемые компет	Уровень сформиро ванности	Этап формирования	Описание показателей	Критерии оценивания	Шкала оценива ния
енции	ванности			оденивания	кин

ОПК 2	Порогория	1. Работа на	anami :	Опрос	Шкала
OHK 2	Пороговы й		знать:	Опрос,	
	И	учебных	- биохимические механизмы	тестирован	оценива
		занятиях	основных молекулярно-	ие,	РИН
		2.	генетических процессов в	защита	опроса
		Самостоятельн	клетке – репликации,	выполненн	Шкала
		ая работа	транскрипции и трансляции;	ЫХ	оценива
			- молекулярные механизмы	лабораторн	ния
			транспорта веществ в клетке;	ых работ	выполне
			- пути обмена углеводов у		ния
			животных и растений и их		лаборат
			энергетический эффект;		орной
			- пути и механизмы распада и		работы
			синтеза простых и сложных		
			липидов;		
			- структуру и механизм		
			действия различных классов		
			ферментов и групп гормонов;		
			- разнообразие и значение		
			процессов биологического		
			окисления и современные		
			представления о биосинтезе ATФ.		
			уметь:		
			- представлять пути		
			превращений белков,		
			нуклеиновых кислот, углеводов		
			и липидов в клетке;		
			- представлять схемы		
			репликации ДНК, биосинтеза и		
			процессинга РНК, матричного		
			механизма биосинтеза белков		
			(трансляции) и регуляции этих		
	17	1 D C	процессов		777
	Продвину	1. Работа на	уметь:	Опрос,	Шкала
	тый	учебных	- представлять пути	тестирован	оценива
		занятиях	превращений белков,	ие, защита	РИЯ
		2.	нуклеиновых кислот, углеводов	выполненн	опроса
		Самостоятельн	и липидов в клетке;	ЫХ	Шкала
		ая работа	- представлять схемы	лабораторн	оценива
			репликации ДНК, биосинтеза и процессинга РНК, матричного	ых работ,	ния
			механизма биосинтеза белков	доклад,	доклада
			(трансляции) и регуляции этих	презентаци	Шкала
			процессов	я, реферат	оценива
			владеть:		ния
			-навыками выбора методов,		выполне
			адекватных для решения		ния
			исследовательских задач в		лаборат
			области биохимии; - навыками сбора научной		орной
			информации, ее анализа,		работы
			обобщения и представления в		раооты Шкала
			виде реферата, научной статьи		
					оценива
			и квалификационной работы		РИН
					презент
					ации
					Шкала

					оценива ния реферат а
дпк 3	й	1. Работа на учебных занятиях 2. Самостоятельн ая работа	Знать: - принципы организации и регуляции обмена веществ и энергии в организме и живой природе в целом; - взаимосвязи обменов различных классов органических соединений в организме и уровни регуляции обмена веществ уметь: - применять научные знания в области биологической химии для освоения других дисциплин биологического и химического циклов и решения профессиональных задач; - осуществлять поиск и анализ научной информации по актуальным вопросам современной биохимии, молекулярной биологии и биоорганической химии	Опрос, тестирован ие, защита выполненн ых лабораторн ых работ	Шкала оценива ния опроса Шкала оценива ния выполне ния лаборат орной работы
	Тый	1. Работа на учебных занятиях 2. Самостоятельн ая работа	уметь: - применять научные знания в области биологической химии для освоения других дисциплин биологического и химического циклов и решения профессиональных задач; - осуществлять поиск и анализ научной информации по актуальным вопросам современной биохимии, молекулярной биологии и биоорганической химии владеть: - практическими навыками биохимических исследований для проведения экспериментальных научноисследовательских работ с биологическими объектами с применением современного биохимического оборудования навыками проведения испытания исходного сырья, промежуточной продукции и объектов производственной среды с помощью химических, биологических и физикохимических методов в соответствии с требованиями,	Опрос, тестирован ие, защита выполненн ых лабораторн ых работ, доклад, презентаци я, реферат	Шкала оценива ния опроса Шкала оценива ния доклада Шкала оценива ния выполне ния лаборат орной работы Шкала оценива ния презент ации Шкала оценива ния реферат а

			нормативной документацией и установленными процедурами		
--	--	--	--	--	--

Шкалы оценивания

Шкала оценивания опроса

Показатель	Балл
Ответ полный и содержательный, соответствует теме; студент умеет	2
аргументировано отстаивать свою точку зрения, демонстрирует знание	
терминологии дисциплины	
Ответ в целом соответствует теме (не отражены некоторые аспекты);	1
студент умеет отстаивать свою точку (хотя аргументация не всегда на	
должном уровне); демонстрирует удовлетворительное знание	
терминологии дисциплины	
Ответ неполный как по объему, так и по содержанию (хотя и	0
соответствует теме); аргументация не на соответствующем уровне,	
некоторые проблемы с употреблением терминологии дисциплины	

Максимальное количество баллов – 14 (по 2 балла за каждый опрос).

Шкала оценивания выполнения лабораторной работы

Критерии оценивания	
Работа выполнена полностью по плану и сделаны правильные выводы;	2
Работа выполнена правильно не менее чем на половину или допущена существенная ошибка	1
Работа не выполнена	0

Максимальное количество баллов – 18 (по 2 балла за работу).

Шкала оценивания доклада

Показатель	
Доклад соответствует заявленной теме, выполнен с привлечением	
достаточного количества научных и практических источников по теме,	
студент в состоянии ответить на вопросы по теме доклада.	
Доклад в целом соответствует заявленной теме, выполнен с привлечением	1
нескольких научных и практических источников по теме, студент в	
состоянии ответить на часть вопросов по теме доклада.	
Доклад не совсем соответствует заявленной теме, выполнен с	
использованием только 1 или 2 источников, студент допускает ошибки при	
изложении материала, не в состоянии ответить на вопросы по теме доклада.	

Максимальное количество баллов – 6 (по 2 балла за доклад).

Шкала оценивания презентации

Показатель	Балл
Представляемая информация систематизирована, последовательна	2
и логически связана. Проблема раскрыта полностью. Широко использованы	
возможности технологии PowerPoint.	

Представляемая информация в целом систематизирована, последовательна и	
логически связана (возможны небольшие отклонения). Проблема раскрыта.	
Возможны незначительные ошибки при оформлении в PowerPoint (не более	
двух).	
Представляемая информация не систематизирована и/или не совсем	0
последовательна. Проблема раскрыта не полностью. Выводы не сделаны или	
не обоснованы. Возможности технологии PowerPoint использованы лишь	
частично.	

Максимальное количество баллов – 6 (по 2 балла за презентацию).

Шкала оценивания реферата

Критерии оценивания		
Содержание соответствуют поставленным цели и задачам, изложение		
материала отличается логичностью и смысловой завершенностью, студент		
показал владение материалом, умение четко, аргументировано и корректно	12-16	
отвечать на поставленные вопросы, отстаивать собственную точку зрения		
Содержание недостаточно полно соответствует поставленным цели и		
задачам исследования, работа выполнена на недостаточно широкой		
источниковой базе и не учитывает новейшие достижения науки, изложение		
материала носит преимущественно описательный характер, студент показал	8-11	
достаточно уверенное владение материалом, однако недостаточное умение	0-11	
четко, аргументировано и корректно отвечать на поставленные вопросы и		
отстаивать собственную точку зрения		
Содержание не отражает особенности проблематики избранной темы;		
содержание работы не полностью соответствует поставленным задачам,		
источниковая база является фрагментарной и не позволяет качественно		
решить все поставленные в работе задачи, работа не учитывает новейшие	4-7	
достижения историографии темы, студент показал неуверенное владение	- /	
материалом, неумение отстаивать собственную позицию и отвечать на		
вопросы		
Работа не имеет логичной структуры, содержание работы в основном не		
соответствует теме, источниковая база исследования является недостаточной		
для решения поставленных задач, студент показал неуверенное владение	0-3	
материалом, неумение формулировать собственную позицию.		

Максимальное количество баллов – 16.

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные темы докладов

- 1. Краткая история возникновения и развития биологической химии.
- 2. Вклад отечественных ученых в развитии биологической химии.
- 3. Сложные белки.
- 4. Белки, участвующие в детоксикации ксенобиотиков (цитохром P_{450} металлотионенны и др.).
- 5. Применение ферментов в геннтой инженерии и биотехнологии.
- 6. Минорные азотистые основания.
- 7. Водорастворимые витамины.
- 8. Жирорастворимые витамины.

- 9. Функции нуклеиновых кислот.
- 10. Генетический код. Отличия в генетическом коде разных живых организмов.
- 11. Распад нуклеотидов.
- 12. Синтез нуклеотидов.
- 13. Регуляция транскрипции у эукариот.
- 14. РНК-интерференция как фундаментальный механизм регуляции биосинтеза белков.
- 15. Посттрансляционные модификации белков.
- 16. Классификация углеводов.
- 17. Регуляция метаболизма углеводов в клетке.
- 18. Сложные липиды.
- 19. Роль фосфолипидов в построении биологических мембран.
- 20. Исследование состава липопротеинов в медицинской диагностике.
- 21. Синтез фосфатидов. Роль цитидинфосфатхолина в этом процессе.
- 22. Классификация гормонов.
- 23. Взаимосвязь обменных процессов в организме.
- 24. Химический состав организмов.
- 25. Значение свободного окисления в детоксикации ксенобиотиков.
- 26. Биохимические методы анализа загрязнений природной среды.

Примерные темы презентаций

- 1. Уровни организации белковой молекулы.
- 2. Нуклеопротеины. Гистоновые белки.
- 3. Хромопротеины. Металлопротеины
- 4. Гликопротеины.
- 5. Фосфопротеины. Фосфорилирование-дефосфорилирование белков как универсальный механизм регуляции активности ферментов.
- 6. Применение ферментов в медицине.
- 7. Витамины A, D, E, K.
- 8. Витамины группы В.
- 9. Витамины С и Р. Явление синергизма.
- 10. Витаминоподобные вещества.
- 11. Липопротеины.
- 12. Гликосфинголипиды. Строение цереброна.
- 13. Фосфолипиды. Строение лецитина.
- 14. Классификация липопротеинов.
- 15. Включение липидов в состав липопротеинов.
- 16. Серотонин и меланин, их структура и функции.
- 17. Тромбоксин и лейкотриены.
- 18. Простагландины.
- 19. Строение рецептора инсулина.
- 20. Механизм действия пептидных гормонов.
- 21. Механизм действия стероидных гормонов.
- 22. Фитогормоны.
- 23. Микросомальное окисление и роль цитохрома P_{450} в этом процессе.
- 24. Активные формы кислорода и ферменты, контролирующие их концентрацию в клетке.

Примерные задания лабораторных работ

- 1. Разделение аминокислот методом радиальной хроматографии.
- 2. Изучение качественных реакции на аминокислоты и белки.
- 3. Количественное определение пролина в растительном материале.
- 4. Изучение физико-химические свойств белков.
- 5. Определение изоэлектрической точки казеина.
- 6. Сложные белки яичный альбумин, казеин молока. Изучение состава.
- 7. Изучение влияния температуры и рН на активность ферментов.
- 8. Изучение специфичности действия ферментов. Исследование влияния активаторов и ингибиторов на активность ферментов.
- 9. Изучение качественных реакции на витамины.
- 10. Выделение дРНП из селезенки. Выделение РНП из дрожжей. Изучение состава нуклеотидов.
- 11. Изучение качественных реакции на углеводы.
- 12. Разделение углеводов методом ТСХ.
- 13. Исследование качества меда. Определение диастазного числа меда.
- 14. Выделение гликогена из печени.
- 15. Выделение растворимого пектина.
- 16. Аналитическая характеристика жиров: определение степени ненасыщенности, йодного числа, кислотного числа, числа омыления.
- 17. Определение активности фермента липазы в семенах.
- 18. Изучение качественных реакции на гормоны.

Примерные темы рефератов

- 1. Белки-прионы и прионовые заболевания.
- 2. Взаимосвязь витаминов и коферментов.
- 3. Явления антагонизма и синергизма в действии витаминов.
- 4. Антибиотики микроорганизмов, фитонциды растений, аттрактанты и репелленты.
- 5. Механизм действия антибиотиков.
- 6. Биохимические функции простагландинов.
- 7. Зеленый флуоресцирующий белок и его применение в генетической инженерии.
- 8. Нейромедиаторная и нейромодуляторная функция биогенных аминов.
- 9. Фитогормоны.
- 10. Применение ферментов в медицине.
- 11. Пептиды регуляторы поведения.
- 12. Гормональная регуляция синтеза различных соединений в организме.
- 13. Передача гормональных сигналов через мембранные рецепторы. Янус-киназы.
- 14. Биохимические методы анализа загрязнений природной среды.
- 15. Строение рецептора инсулина.
- 16. Современные представления о механизме действия инсулина.
- 17. Стероидные гормоны и их участие в регуляции транскрипции.
- 18. Синтетические анаболические стероиды, медицинские показанию к использованию стероидов.
- 19. Фитогормоны.
- 20. Метаболитный уровень регуляции обмена веществ.
- 21. Химические взаимодействия между различными группами организмов.

Примерный перечень вопросов к экзамену 1.

- 1. История и современные научно-практические задачи биологической химии.
- 2. Роль отечественных ученых в становлении и развитии биологической химии.

- 3. Локализация биохимических процессов в клетке.
- 4. Белки, их биологическая роль: значение в построении живой материи и в процессах жизнедеятельности.
- 5. Аминокислотный состав белков
- 6. Особенности строения белковых (протеиногенных) аминокислот. Химическая классификация белковых аминокислот.
- 7. Первичная структура белков. Методы ее определения.
- 8. Современные представления о структуре белковой молекулы. Теоретическое и практическое значение определения первичной структуры белков.
- 9. Вторичная структура белков.
- 10. Классификация белков по элементам вторичной структуры.
- 11. Надвторичная структура белков. Доменная организация белка.
- 12. Третичная структура белковой молекулы. Самоорганизация белковой глобулы.
- 13. Шапероны.
- 14. Четвертичная структура белков. Протомеры и мультимеры.
- 15. Строение гемоглобина и лактатдегидрогеназы.
- 16. Структурная и функциональная классификация белков.
- 17. Синтез пептидов заданного строения и возможности их применения.
- 18. Прионизация белков и изменение вторичной структуры белков-прионов.
- 19. Пептиды. Природные пептиды (глутатион, вазопрессин, энкефалины и др.) и их физиологическое значение. Пути возникновения природных пептидов.
- 20. Функциональная классификация белков и характеристика отдельных групп: структурных, сократительных, транспортных защитных, рецепторных и регуляторных белков.
- 21. Разнообразие и свойства ферментов как катализаторов биологической природы.
- 22. Специфичность действия ферментов.
- 23. Строение ферментов. Субстратный, каталитический и аллостерический центры ферментов.
- 24. Механизм действия ферментов на примере химотрипсина.
- 25. Номенклатура и классификация ферментов.
- 26. Оксидоредуктазы: их общая характеристика и представители.
- 27. Коферменты оксидоредуктаз.
- 28. Трансферазы: их общая характеристика и представители.
- 29. Гидролазы: их общая характеристика и представители.
- 30. Лиазы: их общая характеристика и представители.
- 31. Лигазы: их общая характеристика и представители.
- 32. Ферменты небелковой природы. Энзимы, рибозимы, абзимы.
- 33. Константа Михаэлиса как важнейший параметр характеристики фермента, методы ее определения.
- 34. Множественные формы ферментов. Генетические и эпигенетические причины возникновения множественных форм ферментов.
- 35. Значение исследований изоформ ферментов для медицины, генетики, селекции и мониторинга окружающей среды.
- 36. Применение ферментов в генетической инженерии и биотехнологии. Использование ферментов в диагностике заболеваний.
- 37. Роль витаминов в жизнедеятельности человека и животных. Авитаминозы, гиповитаминозы, гипервитаминозы. Источники витаминов.
- 38. Взаимосвязь витаминов и коферментов.
- 39. Антивитамины, антибиотики, ростовые вещества, фитонциды (важнейшие представители и механизмы их действия).
- 40. Водорастворимые витамины и их роль в обмене веществ, связь с ферментами.
- 41. Жирорастворимые витамины и их роль в обмене веществ.

- 42. Нуклеозиды и нуклеотиды, их классификация, структура и функции.
- 43. Принцип комплементарности и его значение для строения нуклеиновых кислот.
- 44. Строение и внутриклеточная локализация ДНК. Структура хроматина.
- 45. Первичная структура ДНК и методы ее определения. Работы Ф.Сангера и К.Вентера. Понятие о генах и геномах.
- 46. Повреждения структуры ДНК и факторы их вызывающие.
- 47. Вторичная структура нуклеиновых кислот. Полиморфизм ДНК. Особенности вторичной структуры тРНК.
- 48. Классификация рибонуклеиновых кислот.
- 49. Общая характеристика видов РНК и их функций.
- 50. Мозаичное строение генов эукариот и функциональные участки процессированных (зрелых) молекул их мРНК.
- 51. Структура и функции транспортных РНК.
- 52. Структура и функции рибосомальных РНК.
- 53. Структура и функции матричных РНК.
- 54. Химический состав живых организмов.
- 55. Понятие о микро- и ультрамикроэлементах.
- 56. Главные биогенные элементы и их функции.

Примерный перечень вопросов к экзамену 2.

- 1. Пути новообразования аминокислот в природе и их соотношение у различных организмов.
- 2. Пути распада белков. Убиквитин-зависимый протеолиз.
- 3. Пути связывания аммиака в организме. Орнитиновый цикл (цикл мочевины). Патологии аминокислотного обмена.
- 4. Матричный механизм биосинтеза белка. Этапы биосинтеза белка: активация аминокислот и инициация трансляции.
- 5. Матричный механизм биосинтеза белка. Этапы биосинтеза белка: элонгация и терминация.
- 6. Механизм репликации ДНК у бактерий. Репликативная вилка.
- 7. Биосинтез РНК. Регуляция транскрипции.
- 8. Принцип комплементарности и его реализация в процессах репликации, транскрипции и трансляции.
- 9. Генетический код. История его открытия и свойства.
- 10. Взаимосвязь обменов белков и нуклеиновых кислот.
- 11. Общая характеристика и классификация углеводов. Канонические и неканонические функции углеводов.
- 12. Изомерия углеводов.
- 13. Структура и функции моносахаридов.
- 14. Структура и функции полисахаридов.
- 15. Общая характеристика и классификация липидов.
- 16. Триглицериды, их строение и функции. Высшие жирные кислоты.
- 17. Стериды, их строение и биохимические функции.
- 18. Воски, их строение, разнообразие и биологические функции.
- 19. Гликолипиды и их функции. Гликосфинголипиды.
- 20. Фосфолипиды, их строение и биохимические функции.
- 21. Включение липидов в состав липопротеинов. Исследования состава липопротеинов в медицинской диагностике.
- 22. Роль липидов в построении биологических мембран.
- 23. Липиды как источники вторичных посредников гормонов.
- 24. Химический состав организмов. Роль главных биогенных элементов.
- 25. Роль воды и минеральных соединений в процессах жизнедеятельности.
- 26. Пути распада полисахаридов. Регуляция фосфоролиза полисахаридов.

- 27. Химизм дихотомического пути распада глюкозо-6-фосфата. Энергетический эффект процесса.
- 28. Значение апотомического пути распада углеводов.
- 29. Химизм гликолиза.
- 30. Химизм спиртового брожения.
- 31. Окислительное декарбоксилирование ПВК.
- 32. Энергетическое и метаболическое значение цикла дикарбоновых и трикарбоновых кислот.
- 33. Биосинтез углеводов у растений. Строение и роль рибулозо-1,5-дифосфаткарбоксилазы.
- 34. Синтез моносахаридов как обращение дихотомического пути распада у животных.
- 35. Биосинтез олиго- и полисахаридов.
- 36. Распад жиров, его энергетическое и метаболическое значение.
- 37. β-окисление высших жирных кислот.
- 38. Строение и механизм действия ацетил-КоА-карбоксилазы.
- 39. Строение и механизм действия синтазы высших жирных кислот млекопитающих.
- 40. Биосинтез триглицеридов.
- 41. Механизм действия глюкагона и адреналина.
- 42. Роль протеинкиназ в регуляции активности гликоген-фосфорилазы.
- 43. Взаимосвязь процессов обмена липидов и углеводов.
- 44. Структура и функции тироксина.
- 45. Строение и механизм действия стероидных гормонов.
- 46. Свободное окисление. Роль цитохрома P_{450} в детоксикации ксенобиотиков.
- 47. Локализация и функции свободного окисления в клетке.
- 48. Сопряжение окисления с фосфорилированием. Примеры прямого (субстратного) фосфорилирования.
- 49. Строение электронтранспортной цепи митохондрий.
- 50. Оперонный (транскрипционный) уровень регуляции как важнейший этап регуляции обмена веществ в клетке.
- 51. Метаболитный уровень регуляции. Регуляция активности ферментов. Значение множественных форм ферментов в регуляции метаболизма.
- 52. Ретроингибирование ферментов и его роль в регуляции обмена веществ.
- 53. Клеточный уровень регуляции. Проницаемость клеточных и внутриклеточных мембран.
- 54. Транспорт метаболитов в клетке. Ядерно-цитоплазматические взаимоотношения.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Программа освоения дисциплины предусматривает опрос, подготовку доклада и презентации, реферата, выполнение лабораторных работ. Требования к оформлению и выполнению всех предусмотренных в рабочей программе дисциплин форм отчетности и критериев оценивания отражены в методических рекомендациях.

Текущий контроль освоения компетенций обучающимся оценивается из суммы набранных баллов в соответствии с уровнем сформированности компетенций: пороговым или продвинутым.

Максимальное количество баллов по дисциплине -100 баллов. Максимальное количество баллов, которое может набрать студент в течение семестра за различные виды работ -60 баллов. Максимальная сумма баллов, которые студент может получить на экзамене -40 баллов.

Максимальная сумма баллов за устные ответы на практических занятиях — 14 (7 ответов по 2 балла за каждый опрос), за выполнение лабораторных работ — 18 (9 лабораторных работ по 2 балла), за выступление с докладом — 6 баллов (по 2 балла за доклад), с презентацией — 6 баллов (по 2 балла за выступление), за выполнение реферата — 16 баллов.

Промежуточная аттестация проводится в форме экзамена. Экзамен проводится по вопросам. Максимальное число баллов, которые выставляются студенту по итогам по итогам экзамена – 40 баллов. На экзамене студенты должны давать развернутые ответы на

теоретические вопросы, проявляя умение делать самостоятельные обобщения и выводы, приводя достаточное количество примеров.

Шкала оценивания ответов на экзамене

Критерий оценивания	Баллы
Полно раскрыто содержание материала в объеме программы;	31-40
четко и правильно даны определения и раскрыто содержание	
понятий; верно использованы научные термины; для	
доказательства использованы различные умения, выводы из	
наблюдений и опытов; ответ самостоятельный, использованы	
ранее приобретенные знания.	
Раскрыто основное содержание материала; в основном	21-30
правильно даны определения понятий и использованы научные	
термины; определения понятий неполные, допущены	
незначительные нарушения последовательности изложения,	
небольшие неточности при использовании научных терминов	
или в выводах и обобщениях из наблюдений и опытов.	
Усвоено основное содержание учебного материала, но	11-20
изложено фрагментарно, не всегда последовательно;	
определения понятий недостаточно четкие; не использованы в	
качестве доказательства выводы и обобщения из наблюдений и	
опытов или допущены ошибки при их изложении; допущены	
ошибки и неточности в использовании научной терминологии,	
определении понятий.	
Основное содержание вопроса не раскрыто; не даны ответы	0-10
на вспомогательные вопросы; допущены грубые ошибки в	
определении понятий, при использовании терминологии.	

Максимальное количество баллов – 40

Итоговая оценка знаний студентов по изучаемой дисциплине составляет 100 баллов, которые конвертируется в «отлично», «хорошо», «удовлетворительно» или «неудовлетворительно» (итоговая форма контроля – экзамен).

81–100 баллов	«отлично»
61–80 баллов	«хорошо»
41–60 баллов	«удовлетворительно»
21- 40 баллов	«неудовлетворительно»
0-20 баллов	Не аттестован

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1.Основная литература:

- 1. Ершов, Ю.А. Биохимия: учебник и практикум для / Ю. А. Ершов, Н. И. Зайцева. 2-е изд. М.: Юрайт, 2018. 361с. Текст: непосредственный.
- 2. Баженова, И.А. Основы молекулярной биологии : теория и практика: учеб. пособие / И. А. Баженова, Т. А. Кузнецова. СПб.: Лань, 2018. 140с. Текст: непосредственный.
- 3. Коничев, А. С. Молекулярная биология: учебник для вузов / А. С. Коничев, Г. А. Севастьянова, И. Л. Цветков. 5-е изд. Москва: Юрайт, 2021. 422 с. —

- Текст : электронный. URL: https://urait.ru/bcode/459165
- 4. Молекулярная биология. Практикум: учебное пособие для вузов / под ред. А. С. Коничева. 2-е изд. Москва: Юрайт, 2021. 169 с. Текст: электронный. URL: https://urait.ru/bcode/475012

6.2. Дополнительная литература

- 1. Биология в 2 ч.: учебник для вузов / под ред. В. Н. Ярыгина, И. Н. Волкова. 7-е изд. Москва: Юрайт, 2021. Текст : электронный. URL: https://urait.ru/bcode/470632
- 2. Ершов, Ю. А. Биохимия: учебник и практикум для вузов / Ю. А. Ершов, Н. И. Зайцева; под редакцией С. И. Щукина. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 323 с. (Высшее образование). ISBN 978-5-534-07505-2. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/469840
- 3. Комов, В. П. Биохимия: учебник для вузов / В. П. Комов, В. Н. Шведова. 4-е изд. Москва: Юрайт, 2021. 684 с. Текст : электронный. URL: https://urait.ru/bcode/477904
- 4. Конопатов, Ю.В. Основы экологической биохимии : учеб.пособие для вузов / Ю. В. Конопатов, С. В. Васильева. 2-е изд. СПб. : Лань, 2017. 136с. Текст: непосредственный.
- 5. Кривенцев, Ю. А. Биохимия: строение и роль белков гемоглобинового профиля: учебное пособие для вузов / Ю. А. Кривенцев, Д. М. Никулина. 2-е изд. Москва: Юрайт, 2021. 73 с. Текст: электронный. URL: https://urait.ru/bcode/471699
- 6. Новокшанова, А. Л. Органическая, биологическая и физколлоидная химия. Практикум: учебное пособие для вузов. 2-е изд. Москва: Юрайт, 2021. 222 с. Текст: электронный. URL: https://urait.ru/bcode/471476
- 7. Рогожин, В.В. Практикум по биохимии : учеб.пособие для вузов. СПб. : Лань, 2019. 544с. Текст: непосредственный.
- 8. Митякина, Ю. А. Биохимия: Учеб. пособие / Ю.А. Митякина. М.: РИОР, 2019. 113 с.: (Карманное учебное пособие). ISBN 978-5-9557-0268-1. Текст : электронный. URL: https://znanium.com/catalog/product/1014089

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

- http://www.chem.msu.ru/rus/elibrary/welcome.html электронная библиотека учебных материалов по химии
- http://www.genom.gov Национальный исследовательский институт генома человека новейшая информация по исследованию генома человека
- https://ido.tsu.ru виртуальный лабораторный практикум: справочник
- http://www.evolbiol.ru информационно-образовательный портал
- https://www.booksite.ru учебник по биологической химии
- http://elementy.ru/catalog/t51/Biokhimiya базы данных по биологической химии
- http://humbio.ru базы данных по биологии человека
- http://www.ncbi.nlm.nih.gov/ банк данных по первичным структурам нуклеиновых кислот
- https://www.embl.de/ базы учебных и научных материалов по биологической химии
- https://www.ddbj.nig.ac.jp/ база данных по исследованиям в области биологической химии
- http://erop.inbi.ras.ru/ база данных по природным олигопептидам
- http://genefunction.ru/public_results электронная система аннотации бактериальных генов
- https://toukach.ru/rus/csdb.htm база данных по структурам природных углеводов
- http://www.uniprot.org/ база данных о белках и их функциях
- http://www-nbrf.georgetown.edu/ база данных по первичным последовательностям и пространственной структуре белков
- https://biokhimija.ru/ частный сайт по биохимии

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1. Методические рекомендации по подготовке и проведению практических и лабораторных работ для направления подготовки 06.03.01 Биология, профиль «Биомедицинские технологии», квалификация (степень) выпускника бакалавр [Текст]. М., 2021.
- 2. Методические рекомендации по выполнению самостоятельных работ, предусмотренных в рамках направления подготовки 06.03.01 Биология, профиль «Биомедицинские технологии», квалификация (степень) выпускника бакалавр [Текст]. М., 2021.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows Microsoft Office Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ Система «КонсультантПлюс»

Профессиональные базы данных

fgosvo.ru pravo.gov.ru www.edu.ru

Свободно распространяемое программное обеспечение, в том числе отечественного производства

ОМС Плеер (для воспроизведения Электронных Учебных Модулей) 7-zip

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, демонстрационным оборудованием;
- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОV:
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями;
- лаборатория, оснащенная оборудованием: персональными компьютерами с подключением к сети Интернет, наборами демонстрационного оборудования и учебно-

наглядными пособиями. К лабораторным столам подведен природный газ, водопровод, электричество; имеются вытяжные шкафы для работы с токсичными и дурно пахнущими веществами. Для проведения экспериментальной работы используются приборы и оборудование: Спектрофотометр, Центрифуга, Термостат, Водяная баня, Весы технические, Весы аналитические, Магнитная мешалка, рН-метр, Хроматографические колонки, Хроматографические камеры, Водоструйный вакуумный насос, Холодильник, Сушильный шкаф, Вытяжной шкаф, Камера для электрофореза с источником питания, Газовые горелки, Спиртовки. Посуда общего назначения: пробирки, стаканы, колбы плоско- и круглодонные, воронки химические, капельные, делительные, чашки Петри. Фарфоровая посуда: выпарительные чашки, ступки, пестики. Мерная посуда: цилиндры, мерные колбы, пипетки разного объема, в т.ч. автоматические, бюретки.