Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Наумова Наталия Александровна

Должность: Ректор

Дата подписания: 24.10.2024 14:21:41

Уникальный программный ключ: МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ 6b5279da4e034bff679172803da5b7b559fc69e2 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ

(МГОУ)

Физико-математический факультет

Кафедра общей физики

Согласовано управлением организации	И
контроля качества образовательной	

деятельности

«22» июня 2021 г.

Начальник управления

/ Г.Е. Суслин /

Одобрено учебно-методическим советом

Протокол «22» июня 2021 г. № 5

Председатель

/ О.А. Шестакова /

Рабочая программа дисциплины

Обработка эксперимента в физике

Направление подготовки 03.03.02 Физика

> Квалификация Бакалавр

Форма обучения Очная

Согласовано учебно-методической комиссией Рекомендовано кафедрой общей физики физико-математического факультета:

Протокол от «17» июня 2021 г. № 12

min

Председатель УМКом

Протокол от «10» июня 2021 г. № 11

Зав. кафедрой _____

min /Барабанова Н.Н./

/Барабанова Н.Н./

Мытищи 2021

Авторы-составители:

Барабанова Наталья Николаевна, к.ф.-м.н., доцент кафедры общей физики Васильчикова Елена Николаевна, к.ф.-м.н., доцент кафедры общей физики Емельянов Владимир Анатольевич, к.ф.-м.н., доцент кафедры общей физики Жачкин Владимир Арефьевич, д.ф.-м.н., профессор кафедры общей физики Емельянова Юлия Андреевна., ассистент кафедры общей физики.

Рабочая программа дисциплины «Обработка эксперимента в физике» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению 03.03.02 Физика, утвержденного приказом МИНОБРНАУКИ РОССИИ от 07.08.2020 г. № 891.

Дисциплина входит в обязательную часть Блока 1. «Дисциплины (модули)» и является обязательной для изучения.

Год начала подготовки 2021

СОДЕРЖАНИЕ

1.	Планируемые результаты обучения	4
2.	Место дисциплины в структуре образовательной программы	5
3.	Объем и содержание дисциплины	5
4.	Учебно-методическое обеспечение самостоятельной работы обучающих-	7
5.	Фонд оценочных средств для проведения текущей и промежуточной аттестации по дисциплине	11
6.	Учебно-методическое и ресурсное обеспечение дисциплины	19
7.	Методические указания по освоению дисциплины	20
8.	Информационные технологии для осуществления образовательного процесса по дисциплине	20
9	Материально-техническое обеспечение дисциплины	20

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

1.1. Цель и задачи дисциплины «Обработка эксперимента в физике»

Цель дисциплины: изучение теоретических положений и основ теории обработки результатов экспериментальных исследований на базе полученных ранее знаний; формирование систематизированных знаний в области экспериментальной физики как базы для готовности к профессиональной деятельности.

Задачи освоения дисциплины: на основании технических требований или условий проведения эксперимента уметь разработать методику проведения эксперимента, обработать полученные результаты при помощи дисперсионного и регрессионного анализа, сделать необходимые выводы; уметь составить математические модели дисперсионного и регрессионного анализа для того или иного планов экспериментов.

1.2. Планируемые результаты обучения

В результате освоения данной дисциплины у обучающихся формируются следующие компетенции:

ОПК-2 - способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные;

ДПК-1 - Способен понимать и использовать на практике теоретические основы организации и планирования исследований в области физики

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Обработка эксперимента в физике» входит в обязательную часть Блока 1. «Дисциплины (модули)» и является обязательной для изучения.

Для освоения дисциплины «Обработка эксперимента в физике» используются знания, умения и навыки, приобретенные в результате освоения предшествующих дисциплин (модулей): «Математика», «Информатика», «Общая физика», «Теория вероятностей и математическая статистика» и др.

Освоение данной дисциплины является необходимой основой для изучения таких дисциплин, как «Общая и экспериментальная физика», «Теоретическая физика», «Специальный физический практикум».

3. ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Объем дисциплины

Показатель объема дисциплины	Форма обучения
	Очная
Объем дисциплины в зачетных единицах	3
Объем дисциплины в часах	108
Контактная работа:	75,2
Лекции	30
Лабораторные работы	44
Контактные часы на промежуточную аттестацию:	0,2
Зачет	0,2
Самостоятельная работа	26
Контроль	7,8

Формой промежуточной аттестации является: зачет в 5 семестре.

3.2. Содержание дисциплины (очная форма обучения)

Наименование разделов (тем) дисциплины	Количество часов
---	------------------

	Лекции	Лабора- торные занятия
Тема 1. Роль эксперимента в физике. Вероятностные законы и методы в физике. Экспериментальные измерения. Классификация измерений. Классификация погрешностей измерений. Случайные и систематические ошибки измерений. Грубые погрешности и промахи.	2	4
Тема 2. Классическое и статистическое определение вероятности. Геометрические вероятности. Пространство элементарных событий. Общее определение вероятности.	2	2
Тема 3. Вероятности «сложных» событий. Безусловные и условные вероятности. Формулы сложения и умножения вероятностей. Формула полной вероятности. Теорема Байеса.	2	4
Тема 4. Дискретные и непрерывные случайные величины. Функции распределения и функции плотности вероятности. Многомерные распределения. Преобразования случайных величин.	2	2
Тема 5. Математическое ожидание, дисперсия, среднеквадратичное отклонение и их свойства. Ковариация и коэффициент корреляции.	2	4
Тема 6. Неравенство Чебышева. Теорема Бернулли. Центральная предельная теорема Ляпунова.	2	2
Тема 7. «Выборки» данных физических измерений и их статистические свойства. Доверительные интервалы и критерии.	2	4
Тема 8. Основные распределения, используемые при обработке экспериментальных данных. Биномиальное распределение. Распределение Пуассона.	2	2
Тема 9. Нормальное распределение. Функция распределения нормально распределенной случайной величины. Плотность вероятности.	2	2
Тема 10. Распределение Стьюдента. Коэффициенты Стьюдента. Основные свойства и его применение.	2	2
Тема 11. Погрешность однократных измерений (Приборная погрешность). Способы определения приборных погрешностей. Совместный учет случайной ошибки многократных и однократных измерений.	2	2
Тема 12. Погрешность косвенных измерений. Формулы для расчета погрешности при косвенных измерениях.	2	2
Тема 13. Представление результатов эксперимента с учетом погрешности. Правила округления при записи результатов измерений.	1	2
Тема 14. Обработка экспериментальных зависимостей. Графическое представление результатов эксперимента.	1	2
Тема 15. Получение аналитических зависимостей. Графический метод получения параметров функциональной зависимости. Линеаризация функциональных зависимостей.	1	2
Тема 16. Аналитические методы получения параметров функци- ональной зависимости. Способ средней.	1	2
Тема 17. Метод наименьших квадратов и способы его реализации.	1	2

Тема 18. Использование электронных таблиц MS EXCEL для обработки результатов экспериментов в курсе общей физики.	1	2
Итого	30	44

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Темы для самостоятельно- го изучения	Изучаемые вопро- сы	Количе- ство ча- сов	Формы самостоятель- ной работы	Методиче- ские обес- печения	Формы отчетности
1.Вероятностны е законы и методы в физике.	Классическое и статистическое определения вероятности события.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
2.Операции сложения и умножения вероятностей	Теоремы сложения вероятностей несовместных и совместных событий. Теорема умножения вероятностей.	2	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
3.Классификаци я вероятностей	Геометрическая вероятность.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
4.Формула полной вероятности.	Формула Байеса.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Доклад.
5.Классификаци я погрешностей измерений.	Систематическая и случайная по-грешности.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
6.Сущность непрерывной и дискретной случайной величины.	Интегральный и дифференциальный законы распределения случайной величины. Их связь. Графикфункции распределения случайной величины.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
7.Плотность вероятности распределения случайной величины и ее основ-	График вероятно- сти плотности распределения случайной вели- чины и его осо-	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.

ные свойства.	бенности.				
8.Математическ ое ожидание и дисперсия.	Математическое ожидание и дисперсия для непрерывного и дискретного распределений.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
9.Нормальное распределение.	Особенности нормального (Гауссова) распределения.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Доклад.
10.Среднее квадратичное отклонение.	Что характеризуют средним значением и средним квадратичным отклонением?	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
11.Доверительн ый интервал и доверительная вероятность.	Выбор доверительного интервала и доверительной вероятности в физических лабораториях.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
12.Распределени е Стьюдента.	Особенности распределения Стьюдента. С какой целью и в каких случаях в результат измерения вводят коэффициент Стьюдента?	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
	13. Абсолютная и относительная погрешности измерений.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
Погрешности измерений.	14.Оценка при- борных погрешно- стей.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Доклад.
-	15.Суммарная погрешность результата измерения с учетом приборной погрешности.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
	16.Определение величины случайной погрешности	1	Работа с литературой, сетью Интер-	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор-

	косвенных измерений		нет, консульта-		ной работе.
	17.Правила округления погрешности и результата измерения.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	расотс. Конспект. Отчёт по лаборатор- ной работе.
	18.Графический метод обработки результатов и его основные требования.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
	19.Способы определения неизвестных a и b в линейной зависимости $y = ax + b$, построенной графически	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Доклад.
	20.Линеаризация функциональных зависимостей (превращение их в линейные).	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
Методы обра- ботки экспери-	21.Графический метод получения параметров линейной функциональной зависимости.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
ментальных результатов.	22. «Метод средней» при аналитическом методе получения параметров линейной функциональной зависимости из экспериментального графика.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
	23.Применение метода наименьших квадратов при обработке экспериментальных результатов.	1	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Конспект. Отчёт по лаборатор- ной работе.
	24. «Метод наименьших квадратов» и построение нелинейных экспериментальных зависимостей.	2	Работа с литературой, сетью Интернет, консультации.	[6.1], [6.2], [6.3]	Доклад.
ИТОГО		26			

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код и наименование компетенции	Этапы формирования
ОПК-2 - способность проводить научные	1. Работа на учебных занятиях.
исследования физических объектов, систем	2. Самостоятельная работа.
и процессов, обрабатывать и представлять	
экспериментальные данные;	
ДПК-1 - Способен понимать и использо-	1. Работа на учебных занятиях.
вать на практике теоретические основы ор-	2. Самостоятельная работа.
ганизации и планирования исследований в	
области физики	

5.2. Описание показателей и критериев оценивания компетенций на различных

этапах их формирования, описание шкал оценивания

Оце-	Уровень	Этапы фор-	Описание	Критерии оце-	Шка-
нива-	сфор-	мирования	показателей	нивания	ла
ва-	миро-				оце-
мые	ванно-				нива-
ком-	сти				ния
петен					
тен-					
ции					
ОПК	Порого-	1. Работа на	знать методы планирования и	Посещение,	41-60
-2	вый	учебных за-	осуществления учебного экспе-	лабораторные	
		нятиях	римента, оценки результатов экс-	работы, до-	
		2. Самосто-	перимента, подготовки отчетных	машнее зада-	
		ятельная	материалов в рамках изучаемой	ние, доклад,	
		работа	дисциплины при работе в груп-	решение задач,	
			пах;	зачет	
			уметь грамотно планировать и		
			осуществлять учебный экспери-		
			мент, проводить оценку его ре-		
			зультатов, подготавливать отчет-		
			ные материалы в рамках изучае-		
			мой дисциплины при работе в		
			группах		
	Про-	1. Работа на	знать методы планирования и	Посещение,	61-
	двину-	учебных за-	осуществления учебного экспе-	лабораторные	100
	тый	нятиях	римента, оценки результатов экс-	работы, до-	
		2. Самосто-	перимента, подготовки отчетных	машнее зада-	
		ятельная	материалов в рамках изучаемой	ние, доклад,	
		работа	дисциплины при работе в груп-	решение задач,	
			пах;	зачет	
			уметь грамотно планировать и		
			осуществлять учебный экспери-		
			мент, проводить оценку его ре-		
			зультатов, подготавливать отчет-		
			ные материалы в рамках изучае-		
			мой дисциплины при работе в		
			группах;		
			владеть организационно-		

	1	I	I		
			управленческими навыками при		
			работе в научных группах и дру-		
			гих малых коллективах исполни-		
			телей		
ДПК-	Порого-	1. Работа на	Знать:	Посещение,	41-60
1	вый	учебных за-	- методы использования на практи-	лабораторные	
		нятиях	ке теоретических основ организа-	работы, до-	
		2. Самосто-	ции и планирования исследований	машнее зада-	
		ятельная	в области физики на основе школь-	ние, доклад,	
		работа	ного физического эксперимента.	решение задач,	
			Уметь	зачет	
			- использовать на практике теоре-		
			тические основы организации и		
			планирования исследований в об-		
			ласти физики на основе школьно-		
			го физического эксперимента.		
	Про-	1. Работа на	Знать:	Посещение,	61-
	двину-	учебных за-	- методы использования на практи-	лабораторные	100
	тый	нятиях	ке теоретических основ организа-	работы, до-	
		2. Самосто-	ции и планирования исследований	машнее зада-	
		ятельная	в области физики на основе школь-	ние, доклад,	
		работа	ного физического эксперимента.	решение задач,	
			Уметь	зачет	
			- использовать на практике теоре-		
			тические основы организации и		
			планирования исследований в об-		
			ласти физики на основе школьно-		
			го физического эксперимента.		
			Владеть:		
			- опытом использования на прак-		
			тике теоретических основ орга-		
			низации и планирования иссле-		
			дований в области физики на ос-		
			нове школьного физического		
			эксперимента.		

5.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерные темы докладов

- 1. Физическая картина мира основа естественнонаучной картины мира.
- 2. Фундаментальные законы физики основа современной парадигмы научного мышления.
 - 3. Корпускулярная и континуальная концепции описания природы.
 - 4. Дискретность и непрерывность в природе.
 - 5. Структура материального мира. Устройство Вселенной.
 - 6. Порядок и беспорядок.
 - 7. Понятия взаимодействия, состояния. Упорядоченность и хаос в природе.
 - 8. Понятие энтропии. Принцип возрастания энтропии.
 - 9. Порядок-беспорядок в природе и социальных структурах.
 - 10. Биотехнологии и будущее цивилизации.
 - 11. Взаимосвязь биологической и культурной эволюции.

- 12. Влияние Космоса на эволюцию биосферы.
- 13. Генная инженерия: проблемы и перспективы.
- 14. Гипотезы происхождения жизни на Земле.
- 15. Значение и функции науки в современном обществе.
- 16. Космологическая модель расширения Вселенной.
- 17. Мегамир: современные астрофизические и космологические концепции.
- 18. Наука и псевдонаучные формы духовной культуры.
- 19. Перспективы эволюции человека: реальность и возможности.
- 20. Проблема происхождения Вселенной в современной космологии.
- 21. Проблема происхождения человека и общества, её мировоззренческое значение.

Примерные домашние задания

	Примерные домашние задания							
1.	Сколько в литре кубических метров?	1. Их нельзя сравнивать						
		2. 10						
		$3. \ 10^{-2}$						
		4. 10 ⁻³						
		5. 1000						
2.	Если на движущееся тело перестанут дей-	1. Сразу остановится.						
	ствовать внешние силы, оно	2. Будет вечно двигаться.						
		3. Упадет на землю.						
		4. В конце концов остановится.						
		5. Недостаточно данных для ответа.						
3.	Если бы в природе не существовала сила	1. Легче.						
	трения, то ездить на автомобиле было бы	2. Труднее.						
		3. Зимой труднее, а летом легче.						
		4. Невозможно.						
		5. Зависит от его мощности.						
4.	Температура и объем идеального газа	1. Увеличилось в 3 раза.						
	увеличились в 3 раза. Как при этом изме-	2. Увеличилось в 9 раз.						
	нилось давление газа?	3. Уменьшилось в 3 раза						
		4. Не изменилось.						
		5. Для ответа недостаточно данных.						
5.	Среднее расстояние между молекула-	1. 10 pa3						
	ми воды при атмосферном давлении в	2. 100 pa3						
	результате перехода из газообразного	3. 1000 раз						
	состояния в жидкое уменьшится при-	4. 10 000 pa3						
	мерно в	5. Среди ответов (1-4) нет правильного.						
6.	Напряжение на конденсаторе увеличи-	1. Увеличилась в 2 раза.						
	лось в 2 раза. Как изменилась при этом	2. Уменьшилась в 2 раза.						
	электроемкость конденсатора?	3. Не изменилась						
		4. Ответ зависит от типа конденсатора.						
		5. Ответ зависит от типа диэлектрика.						
7.	Кусок медной проволоки сопротивлением	1. 0.25 Ом						
	4 Ом (без изоляции) сложили вчетверо.	2. 0.5 Ом						
	Его сопротивление равно	3. 1 Ом						
		4. 2 Ом						
		5. 4 Ом						
8.	Магнитное поле можно обнаружить по	1. Магнитную стрелку						
	его действию на	2. Проводник с током.						
		3. Движущийся заряд.						
		4. Верны ответы 1, 2 и 3.						

		5. Неподвижный заряд.
9.	Какая доля радиоактивных атомов остает-	1. 25%
	ся нераспавшейся через интервал времени,	2. 50%
	равный двум периодам полураспада?	3. 1/8
		4. e ⁻²
		5. e ⁻¹

Контрольные вопросы к защите лабораторных работ Лабораторная работа №1

«Нормальное распределение случайных величин».

- 1. Нормальное распределение (Распределение Гаусса). Функция распределения нормально распределенной случайной величины. Плотность вероятности.
- 2. Какова математическая форма записи нормального распределения с помощью функции Гаусса?
 - 3. Почему нормальное распределение чаще других встречается в эксперименте?
- 4. Что характеризуют средним значением и средним квадратичным отклонением? Как эти величины оценивают исходя из экспериментальных результатов?
- 5. Что такое дисперсия? Что такое математическое ожидание? Чем отличаются выражения для математического ожидания и дисперсии для непрерывного и дискретного распределений?
 - 6. Какая связь между дисперсией и шириной гауссовой линии на полувысоте?
 - 7. Что такое гистограмма случайной величины и как ее строят?
- 8. При каких условиях гистограмма переходит в распределение плотности вероятности?

Лабораторная работа №2

«Теоремы сложения и умножения вероятностей. Определение вероятности различных событий».

- 1. Теорема сложения вероятностей несовместных событий.
- 2. Что такое условная вероятность?
- 3. Теорема умножения вероятностей.
- 4. Теорема умножения для независимых событий и для зависимых событий.
- 5. Теорема сложения вероятностей совместных событий и несовместных событий.
- 6. Формула полной вероятности.
- 7. Формула Байеса.

Лабораторная работа №3

«Нахождение доверительного интервала для математического ожидания».

- 1. Что называют доверительным интервалом для параметров нормального распределения.
- 2. Что называют *надежностью* (доверительной вероятностью) оценки искомого параметра нормального распределения?
- 3. Как определяют доверительный интервал для математического ожидания при известной дисперсии σ ?
 - 4. В чем заключается правило «3-х сигм»?
- 5. Каков порядок нахождения по данным выборки доверительного интервала для математического ожидания a с надежностью α при известной σ ?

Лабораторная работа №4

«Определение массы цилиндра по косвенным измерениям его размеров».

- 1. Какие измерения называются прямыми и косвенными? Приведите примеры прямых и косвенных измерений.
 - 2. Что называется абсолютной погрешностью измерений?

- 3. Какие погрешности называются систематическими, случайными? Приведите примеры этих погрешностей.
 - 4. Оценка случайных погрешностей прямых измерений.
 - 5. Коэффициент Стьюдента, надежность, доверительный интервал.
 - 6. Оценка приборных погрешностей прямых измерений.
 - 7. Полная абсолютная погрешность прямых измерений.
 - 8. Относительная погрешность прямых измерений.
 - 9. Относительная погрешность косвенных измерений.
 - 10. Абсолютная погрешность косвенных измерений.

Лабораторная работа №5

«Определение объема параллелепипеда».

- 1. Какие измерения называются прямыми и косвенными? Приведите примеры прямых и косвенных измерений.
 - 2. Что называется абсолютной погрешностью измерений?
- 3. Какие погрешности называются систематическими, случайными? Приведите примеры этих погрешностей.
 - 4. Оценка случайных погрешностей прямых измерений.
 - 5. Коэффициент Стьюдента, надежность, доверительный интервал.
 - 6. Оценка приборных погрешностей прямых измерений.
 - 7. Полная абсолютная погрешность прямых измерений.
 - 8. Относительная погрешность прямых измерений.
 - 9. Относительная погрешность косвенных измерений.
 - 10. Абсолютная погрешность косвенных измерений.

Лабораторная работа №6

«Графический метод получения параметров линейной функциональной зависимости».

- 1. Какие основные требования предъявляются к построению графика (к обозначениям на координатных осях, к масштабным делениям, к выбору начала координат)?
- 2. Как проводить кривую (прямую), изображающую экспериментальную зависимость?
- 3. Как откладывается погрешность измерения величин (доверительный интервал)?
- 4. Какие способы применяются для определения неизвестных a и b линейной зависимости y = ax + b, построенной графически?

Лабораторная работа №7

«Графический метод получения параметров квадратичной функциональной зависимости».

- 1. Какие функциональные зависимости могут быть линеаризированы (превращены в линейные)? Привести примеры.
 - 1. Как можно линеаризировать функцию $y = ax^{b}$?
- 2. Какой заменой переменных можно превратить функцию $y = ax^2 + c$ в линейную?
- 3. Какие координатные оси выбирают при преобразовании квадратичной зависимости в линейную?
 - 4. Как можно линеаризировать функцию $y = ax^2 + bx + c$?
- 5. Какие недостатки характерны для графического метода получения параметров линейной функциональной зависимости?
- 6. В чем заключается «метод средней» при аналитическом методе получения параметров линейной функциональной зависимости?
- 7. Почему при нахождении параметров a и b линейной зависимости y = ax + b «методом средней» все экспериментальные результаты разбивают на две группы»?

Лабораторная работа №8

«Аналитический метод получения параметров функциональной зависимости. Способ средней».

- 1. Какие функциональные зависимости могут быть линеаризированы (превращены в линейные)? Привести примеры.
 - 2. Как можно линеаризировать функцию $y = ax^{b}$?
- 3. Какой заменой переменных можно превратить функцию $y = ax^2 + c$ в линейную?
- 4. Какие координатные оси выбирают при преобразовании квадратичной зависимости в линейную?
 - 5. Как можно линеаризировать функцию $y = ax^2 + bx + c$?
- 6. Какие недостатки характерны для графического метода получения параметров линейной функциональной зависимости?
- 7. В чем заключается «метод средней» при аналитическом методе получения параметров линейной функциональной зависимости?
- 8. Почему при нахождении параметров a и b линейной зависимости y = ax + b «методом средней» все экспериментальные результаты разбивают на две группы»

Лабораторная работа №9

«Аналитический метод получения параметров функциональной зависимости. Метод наименьших квадратов».

- В чем заключаются преимущества аналитического метода получения парамет-
- ров функциональной зависимости над графическим?
 2. Каков порядок применения метода наименьших квадратов к определению параметров произвольной функциональной зависимости?
 - 3. Какая основная особенность «метода наименьших квадратов»?
- 4. В чем заключается принципиальное отличие «метода наименьших квадратов» от «метода средней»?
- 5. В чем заключается суть «метода наименьших квадратов» как способа определения коэффициентов экспериментальных зависимостей?
- 6. Применим ли «метод наименьших квадратов» к построению нелинейных экспериментальных зависимостей?
 - 7. Каковы недостатки «метода наименьших квадратов»?

Примерные темы и вопросы для самостоятельной работы

- 1. Классическое и статистическое определения вероятности события.
- 2. Что такое геометрическая вероятность?
- 3. Теорема сложения вероятностей несовместных событий.
- 4. Теорема умножения вероятностей.
- 5. Теорема сложения вероятностей совместных событий
- 6. Формула полной вероятности
- 7. Формула Байеса.
- 8. Что такое систематическая и случайная погрешности?
- 9. Сущность непрерывной и дискретной случайной величины.
- 10. Что такое интегральный закон распределения случайной величины?
- 11. График функции распределения случайной величины.
- 12. Что такое дифференциальный закон распределения случайной величины?
- 13. Плотность вероятности распределения случайной величины и ее основные свойства.
- 14. График вероятности плотности распределения случайной величины и его особенности.
- 15. Какова связь интегрального и дифференциального законов распределения случайной величины?

- 16. Основные характеристики случайной величины, заданной своим распределением.
 - 17. Что такое математическое ожидание?
 - 18. Что такое дисперсия?
- 19. Чем отличаются выражения для математического ожидания и дисперсии для непрерывного и дискретного распределений.
- 20. Назовите примеры законов распределения непрерывной и дискретной случайной величины.
 - 21. Особенности нормального (Гауссова) распределения.
 - 22. Почему нормальное распределение чаще других встречается в эксперименте?
 - 23. Что характеризуют средним значением и средним квадратичным отклонением?
 - 24. Что такое доверительный интервал и доверительная вероятность?
 - 25. Особенности распределения Стьюдента.
- 26. С какой целью и в каких случаях в результат измерения вводят коэффициент Стьюлента?
 - 27. Что такое абсолютная и относительная погрешности измерений?
 - 28. Как количественно оценивают приборную погрешность?
- 29. Как определяют суммарную погрешность результата измерения с учетом приборной погрешности?
 - 30. Чем определяется величина случайной погрешности косвенных измерений?
 - 31. Правила округления погрешности и результата измерения?
- 32. Назначение графического метода обработки результатов и его основные требования.
- 33. Какие способы применяются для определения неизвестных a и b линейной зависимости y = ax + b, построенной графически?
- 34. Какие функциональные зависимости могут быть линеаризированы (превращены в линейные)? Привести примеры.
 - 35. Как можно линеаризировать функцию $y = ax^b$?
 - 36. Какой заменой переменных превращают функцию $y = ax^b$ в линейную?
- 37. Какие недостатки характерны для графического метода получения параметров линейной функциональной зависимости?
- 38. В чем заключается «метод средней» при аналитическом методе получения параметров линейной функциональной зависимости из экспериментального графика?
- 39. Почему при нахождении параметров a и b линейной зависимости y = ax + b «методом средней» все экспериментальные результаты разбивают на две группы»?
- 40. В чем заключается метод наименьших квадратов при обработке экспериментальных результатов и как он применяется?
- 41. Применим ли «метод наименьших квадратов» к построению нелинейных экспериментальных зависимостей?

Примерные теоретические вопросы к зачету

- 1. Случайные и систематические ошибки измерений.
- 2. Вероятность. Классическое и статистическое определение вероятности.
- 3. Теорема умножения вероятностей. Формулы сложения и умножения вероятностей.
 - 4. Формула полной вероятности. Теорема Байеса.
- 5. Случайная величина. Дискретные и непрерывные случайные величины. Выборка и генеральная совокупность. Гистограмма.
 - 6. Функции распределения и функции плотности вероятности. Примеры.
- 7. Математическое ожидание случайной величины. Свойства математического ожилания.
- 8. Дисперсия случайной величины. Свойства дисперсии дискретной случайной величины.

- 9. Среднее квадратичное отклонение. Правило «3-х стандартов» (или 3-х сигм).
- 10. Преобразование случайных величин. Понятие о моментах распределения.
- 11. Теорема (неравенство) Чебышева. Теорема Бернулли.
- 12. Закон больших чисел Чебышева. Центральная предельная теорема Ляпунова
- 13. Генеральная и выборочная средние. Методы их расчёта. Практический приём вычисления выборочной средней.
 - 14. Генеральная и выборочная дисперсии. Методы их расчёта.
- 15. Доверительный интервал и надежность. Доверительные интервалы для параметров нормального распределения.
- 16. Доверительный интервал для математического ожидания при известном среднеквадратичном отклонении σ.
- 17. Биномиальное распределение. Математическое ожидание, дисперсия и среднее квадратичное отклонение при биномиальном распределении.
- 18. Распределение Пуассона. Математическое ожидание, дисперсия и среднее квадратичное отклонение при распределении Пуассона.
- 19. Нормальное распределение (Распределение Гаусса). Функция распределения нормально распределенной случайной величины. Плотность вероятности.
- 20. Математическое ожидание и дисперсия нормального распределения. Нормальное распределение с нулевым математическим ожиданием и единичной дисперсией нормированное (стандартное) нормальное распределение.
 - 21. Среднеквадратичное отклонение.
- 22. Распределение Стьюдента. Основные свойства распределения Стьюдента и его применение. Доверительные интервалы и надежность в методе Стьюдента. Таблица коэффициентов Стьюдента.
- 23. Графический метод получения параметров функциональной зависимости экспериментальных данных.
- 24. В чем заключается способ линеаризации функциональных зависимостей? Привести примеры.
 - 25. Как можно линеаризировать функцию $y = ax^{b}$?
 - 26. Какой заменой переменных превращают функцию $y = ax^b$ в линейную?
- 27. В чем заключается «метод средней» при аналитическом методе получения параметров линейной функциональной зависимости из экспериментального графика?
- 28. В чем заключается метод наименьших квадратов при обработке экспериментальных результатов и как он применяется?
- 29. Как применить «метод наименьших квадратов» к построению нелинейных экспериментальных зависимостей?
- 30. Аналитические методы получения параметров функциональной зависимости на основе экспериментальных графиков.

5.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Оценивание степени освоения обучающимися дисциплины осуществляется на основе «Положение о балльно-рейтинговой системе оценки успеваемости студентов МГОУ».

Сопоставимость рейтинговых показателей студента по разным дисциплинам и Балльнорейтинговой системы оценки успеваемости студентов обеспечивается принятием единого механизма оценки знаний студентов, выраженного в баллах, согласно которому 100 баллов это полное усвоение знаний по учебной дисциплине, соответствующее требованиям учебной программы.

Максимальный результат, который может быть достигнут студентом по каждому из Блоков рейтинговой оценки — 100 баллов.

В зачетно-экзаменационную ведомость и зачетную книжку выставляются оценки по

пятибалльной шкале и рейтинговые оценки в баллах.

Шкала оценивания зачета

Оценка	Балл
Зачтено	41-100
Не зачтено	0-40

При получении студентом на зачёте неудовлетворительной оценки в ведомость выставляется рейтинговая оценка в баллах (<40 баллов), соответствующая фактическим знаниям (ответу) студента.

Критерии оценки знаний студентов в рамках каждой учебной дисциплины или групп дисциплин вырабатываются преподавателями согласованно на кафедрах Университета исходя из требований образовательных стандартов.

Процедура оценивания знаний и умений состоит из следующий составных элементов:

- 1) учет посещаемости лекционных и лабораторных занятий осуществляется по ведомости, представленной ниже в форме таблицы;
- 2) текущий контроль.

Направление: Физика

Московский государственный областной университет Ведомость учета посещения Физико-математический факультет

Дисці	иплина: Обработка	экспе	ериме	ента 1	в физи	ке			
Групг	ıa №								
Препо	одаватель:								
No	Фамилия И.О.				I	Тосещ	ение занятий		Итого
Π/Π	студента	1	2	3	4			18	%
1.		+	-	+	-			+	61
2.		-	+	+	+			+	66
	Моско	вски	й гос	удар	ствен	ный о	бластной университет	•	•

Московский государственный областной университет Ведомость учета текущей успеваемости Физико-математический факультет

Направление: Физика	
Дисциплина: Обработка эксперимента в физике	
Группа №	
Преподаватель:	

$N_{\underline{0}}$	Фами-	Сумм	а балл	ов, наб	ранных	х в се-	Отм. о	Под-	Об-	Ит	оговая	Подпись
Π/	ЛИЯ			местре	•		зачете	пись	щая	OI	ценка	препо-
П	И.О.	Посе-	Ла-	Само-	До-	До-		препо-	сум-	Циф	Про-	давателя
		сеще-	бора-	мо-	клад	маш-		дав.	ма	pa	пись	
		ще-	тор-	стоя-		ние			бал-			
		ние	ные	тель-		зада-			ЛОВ			
			рабо-	ная		ния	50					
			ТЫ	рабо-			до 50		Д0			
				та	до 10	до 10	баллов		100			
		до 10	до 10	до 10	бал-	бал-			бал-			
		бал-	бал-	бал-	ЛОВ	лов			лов			
		ЛОВ	ЛОВ	ЛОВ								
1.												

2.						
3.						

Шкала и критерии оценивания посещаемости

Уровни оценивания	Критерии оценивания	Баллы
Высокий(отлично)	Если студент посетил 81-100% от всех занятий.	8-10
Оптимальный(хорошо)	Если студент посетил 61-80% от всех занятий.	5-7
Удовлетворительный	Если студент посетил 41-60% от всех занятий	2-4
Неудовлетворительный	Если студент посетил 0-40% от всех занятий	0-1

Шкала и критерии оценивания домашних работ

Уровни оценивания	Критерии оценивания	Баллы
Высокий(отлично)	Если студент решил 71-90% от всех домашних работ	8-10
Оптимальный(хорошо)	Если студент решил 51-70% от всех домашних работ	5-7
Удовлетворительный	Если студент решил 31-50% от всех домашних работ	2-4
Неудовлетворительный	Если студент решил 0-30% от всех домашних работ	0-1

Шкала и критерии оценивания написания доклада

Уровни оценивания	Критерии оценивания	Баллы
Высокий(отлично)	Если студент отобразил в докладе 71-90% выбранной	8-10
	темы.	
Оптимальный(хорошо)	Если студент отобразил в докладе 51-70% выбранной	5-7
	темы	
<i>Удовлетворительный</i>	Если студент отобразил в докладе 31-50% выбранной	2-4
	темы	
Неудовлетворительный	Если студент отобразил в докладе 0-30% выбранной	0-1
	темы	

Шкала и критерии оценивания самостоятельной работы

шкала и критерии оцег	шкала и критерии оценивания самостоятельной работы					
Уровни оценивания	Критерии оценивания	Баллы				
Высокий(отлично)	Если студент выполнил 71-90% от всей самостоя-	8-10				
	тельной работы					
Оптимальный(хорошо)	Если студент выполнил 51-70% от всей самостоя-	5-7				
	тельной работы					
<i>Удовлетворительный</i>	Если студент выполнил 31-50% от всех домашних ра-	2-4				
	боты					
Неудовлетворительный	Если студент выполнил 0-30% от всех домашних ра-	0-1				
-	боты					

Шкала и критерии оценивания домашних работ

Уровни оценивания	Критерии оценивания	Баллы
Высокий(отлично)	Если студент решил 71-90% от всех домашних работ	8-10

Оптимальный(хорошо)	Если студент решил 51-70% от всех домашних работ	5-7
Удовлетворительный	Если студент решил 31-50% от всех домашних работ	2-4
Неудовлетворительный	Если студент решил 0-30% от всех домашних работ	0-1

Структура оценивания зачета

Уровни оценивания	Критерии оценивания	Баллы
Зачтено	Полные и точные ответы на все вопросы. Свободное	
	владение основными терминами и понятиями курса;	
	последовательное и логичное изложение материала	32-50
	курса; законченные выводы и обобщения по теме во-	
	просов; исчерпывающие ответы на вопросы.	
Не зачтено	Ответ на менее половины вопросов.	0-31

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- 1. Баврин И.И. Высшая математика: учебник для бакалавров / И. И. Баврин. 2-е изд., доп. М.: Юрайт, 2014. 616с. Текст: непосредственный.
- 2. Бугров, Я. С.Высшая математика. Задачник : учебное пособие для академического бакалавриата / Я. С. Бугров, С. М. Никольский. Москва : Издательство Юрайт, 2019. 192 с. (Бакалавр. Академический курс). ISBN 978-5-9916-7568-0. URL: https://biblio-online.ru/bcode/433433 (дата обращения: 17.07.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «Юрайт». Текст : электронный.
- 3. Шипачев, В. С.Высшая математика : учебник и практикум для бакалавриата и специалитета / В. С. Шипачев. 8-е изд., перераб. и доп. Москва : Издательство Юрайт, 2019. 447 с. (Бакалавр и специалист). ISBN 978-5-9916-3600-1. URL: https://biblio-online.ru/bcode/425158 (дата обращения: 17.07.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «Юрайт». Текст : электронный.

6.2. Дополнительная литература:

- 1. Палий И.А. Введение в теорию вероятностей: учеб. Пособие для вузов / И. А. Палий. М. : Высш.шк., 2005. 175с. Текст: непосредственный.
- 2. Палий И.А. Теория вероятностей: Учебное пособие / И.А. Палий. М.: ИНФРА-М, 2012. 236 с. (Высшее образование). URL: http://znanium.com/catalog/product/225156 (дата обращения: 17.07.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «znanium.com». Текст: электронный.
- 3. Иванов, Б.Н. Теория вероятностей и математическая статистика : учебное пособие / Б.Н. Иванов. Санкт-Петербург : Лань, 2019. 224 с. ISBN 978-5-8114-3636-1. URL: https://e.lanbook.com/book/113901 (дата обращения: 17.07.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «Лань». Текст : электронный/
- 4. Буре, В.М. Теория вероятностей и математическая статистика: учебник / В.М. Буре, Е.М. Парилина. Санкт-Петербург: Лань, 2013. 416 с. ISBN 978-5-8114-1508-3. —

URL: https://e.lanbook.com/book/10249 (дата обращения: 17.07.2019). — Режим доступа: для авториз. пользователей Электронно-библиотечная система «Лань». — Текст : электронный.

- 5. Кравченко Н.С., Равинская О.Г. Методы обработки результатов измерений и оценки погрешностей в учебном лабораторном практикуме [Текст] : учебное пособие –Томск: Изд-во Томского политехнического университета, 2011, –88с.
- 6. Кремер Н.Ш. Теория вероятностей и математическая статистика: учебник для вузов / Н.Ш.Кремер. 2-е изд., доп. М.: ЮНИТИ, 2007. 551с. Текст: непосредственный.
- 7. Шуленин В.П. Математическая статистика. Ч.1. Параметрическая статистика [Текст] : В.П.Шуленин. учебник. Томск: Изд-во НТЛ, 2012. 540с.
- 8. Сидняев, Н. И. Теория планирования эксперимента и анализ статистических данных : учебник и практикум для вузов / Н. И. Сидняев. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2019. 495 с. (Высшее образование). ISBN 978-5-534-05070-7. URL: https://biblio-online.ru/bcode/446877 (дата обращения: 17.07.2019). Режим доступа: для авториз. пользователей Электронно-библиотечная система «Юрайт». Текст : электронный.
- 9. Джонсон Н., Лион Ф. Статистика и планирование эксперимента в технике и науке. Методы планирования эксперимента. М.: Мир, 1981. 551с.

6.3. Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. http://mgou.ru/index.php?option=com_content&task=view&id=48&Itemid=614
- 2. Научная электронная библиотека http://elibrary.ru

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

- 1. Грань Т.Н., Холина С.А. Методические рекомендации по проведению лекционных занятий.
- 2. Грань Т.Н., Холина С.А. Методические рекомендации по проведению лабораторных и практических занятий.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Лицензионное программное обеспечение:

Microsoft Windows Microsoft Office Kaspersky Endpoint Security

Информационные справочные системы:

Система ГАРАНТ Система «КонсультантПлюс»

Профессиональные базы данных

fgosvo.ru pravo.gov.ru www.edu.ru

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение дисциплины включает в себя:

- учебные аудитории для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консуль-

таций, текущего контроля и промежуточной аттестации, укомплектованные учебной мебелью, доской, демонстрационным оборудованием.

- помещения для самостоятельной работы, укомплектованные учебной мебелью, персональными компьютерами с подключением к сети Интернет и обеспечением доступа к электронным библиотекам и в электронную информационно-образовательную среду МГОУ;
- помещения для хранения и профилактического обслуживания учебного оборудования, укомплектованные мебелью (шкафы/стеллажи), наборами демонстрационного оборудования и учебно-наглядными пособиями;
- лаборатория, оснащенная лабораторным оборудованием:
 - 1. Демонстрационный стенд «Движение тела, брошенного под углом к горизонту»
 - 2. Комплект оборудования «Законы динамики»
 - 3. Комплект оборудования «Силы инерции»
 - 4. Комплект оборудования «Закон сохранения момента импульса»
 - 5. Установка «Маятник Обербека»
 - 6. Комплект оборудования «Гироскопический эффект»
 - 7. Установка «Центр качаний физического маятника»
 - 8. Установка « Вынужденные колебания. Колебания цилиндрической пружины»
- 9. Комплект оборудования «Упругие свойства твердых тел»
- 10. Комплект оборудования «Закон Бернулли. Реакция вытекающей струи. Полет ракеты»
- 11. Комплект оборудования «Движение тел в вязких средах. Явление Магнуса»
- 12. Комплект оборудования «Демонстрация стоячих волн»
- 13. Комплект оборудования «Фигуры Лиссажу. Биения»
- 14. Установка «Резонанс. Эффект Доплера»
- 15. Комплект оборудования «Экспериментальные основы молекулярно-кинетической теории»
 - 16. Комплект оборудования «Молекулярные явления в жидкостях»
 - 17. Комплект оборудования «Взаимные превращения жидкости, пара и твердого тела»
 - 18. Установка «Капиллярный эффект»
 - 19. Комплект оборудования «Молекулярные явления в жидкостях»
 - 20. Комплект оборудования «Термодинамические процессы»
 - 21. Комплект оборудования «Электростатика»
 - 22. Комплект оборудования «Постоянный электрический ток»
 - 23. Комплект оборудования «Электромагнетизм»
 - 24. Комплект оборудования «Электромагнитная индукция»
 - 25. Комплект оборудования «Магнетизм»
 - 26. Комплект оборудования «Переменный ток»
 - 27. Комплект оборудования «Электрические колебания и волны»
- 28. Комплект оборудования «Прохождение электричества через электролиты и через газы»
 - 29. Комплект оборудования «Геометрическая оптика»
 - 30. Комплект оборудования «Интерференция света»
 - 31. Комплект оборудования «Дифракция света»
 - 32. Комплект оборудования «Испускание и поглощение света»
 - 33. Комплект оборудования «Получение и анализ поляризационного света»
 - 34. Комплект оборудования «Распространение света в кристаллах»
 - 35. Комплект оборудования «Демонстрация работы лазеров»